哈恩-巴拿赫定理

泛函分析中,哈恩-巴拿赫定理是一个极为重要的工具。它允许了定义在某个向量空间上的有界线性算子扩张到整个空间,并说明了存在“足够”的连续线性泛函,定义在每一个賦範向量空間,使对偶空间的研究变得有趣味。这个定理以汉斯·哈恩斯特凡·巴拿赫命名,他们在1920年独立证明了这个定理。

表述 编辑

定理的最一般的表述需要一些准备。给定标量 实数域或复数域)上的一个向量空间 ,一个函数 称为次线性的,如果:

 

可以很容易证明, 上的每一个范数和每一个半范数都是次线性的。其它的次线性函数也可以是很有用的。

哈恩-巴拿赫定理说明,如果 是一个次线性函数,  子空间 上的一个线性泛函,满足:

 

那么存在φ到整个空间 的一个线性扩张 ,也就是说,存在一个线性泛函ψ,使得:

 

以及:

 

扩张ψ一般不是由φ唯一指定的,定理的证明也没有给出任何求出ψ的方法:在无穷维空间 的情形中,它依赖于佐恩引理——选择公理的一个表述。

我们可以把 的次线性条件稍微减弱,只需要:

 

根据(Reed and Simon, 1980)。这揭示了哈恩-巴拿赫定理与凸性的密切联系。

重要的结果 编辑

这个定理有一些重要的结果,其中有些也有时称为“哈恩-巴拿赫定理”:

  • 如果V是一个赋范向量空间,其子空间为U(不一定是闭的),且φ : UK是连续和线性的,那么存在φ的一个扩张ψ : VK,也是连续和线性的,且范数与φ相同(关于线性映射的范数的讨论,参见巴拿赫空间)。也就是说,在赋范向量空间的范畴中,空间 是一个内射对象
  • 如果V是一个赋范向量空间,其子空间为U(不一定是闭的),且zV的一个元素,不在U闭包内,那么存在一个连续线性映射ψ : VK,对于U内的所有x都满足ψ(x) = 0,ψ(z) = 1,且||ψ|| = 1/dist(z,U)。

哈恩-巴拿赫分离定理 编辑

哈恩-巴拿赫定理的另外一种形式,称为哈恩-巴拿赫分离定理[1][2]它在凸几何中有许多用途。[3]

定理: 为   上的一个拓扑向量空间   是  的非空凸子集。假设 。那么:

  1. 如果 是开集,那么存在一个连续线性映射 和  ,使得对于所有的  ,都有  
  2. 如果  是局部凸的,  是紧集,且  是闭集,那么存在一个连续线性映射  和  ,使得对于所有的  ,都有  

与选择公理的关系 编辑

前面已经提到,从选择公理可以推出哈恩-巴拿赫定理。然而,反过来不成立。注意超滤子引理比选择公理更弱,但从它也可以推出哈恩-巴拿赫定理(反过来则不行)。实际上,哈恩-巴拿赫定理还可以用比超滤子引理更弱的假设来证明。[4]对于可分巴拿赫空间,Brown和Simpson证明了哈恩-巴拿赫定理可以从WKL0——一个二阶算术的弱子系统推出。[5]

参见 编辑

注释 编辑

  1. ^ Klaus Thomsen, 哈恩-巴拿赫分离定理页面存档备份,存于互联网档案馆),Aarhus University, 高等分析讲座页面存档备份,存于互联网档案馆
  2. ^ Gabriel Nagy, 实分析页面存档备份,存于互联网档案馆讲座页面存档备份,存于互联网档案馆
  3. ^ R. Harvey and H. B. Lawson, "An intrinsic characterisation of Kahler manifolds," Invent. Math 74 (1983) 169-198.
  4. ^ D. Pincus, The strength of Hahn–Banach's Theorem, in: Victoria Symposium on Non-standard Analysis, Lecture notes in Math. 369, Springer 1974, pp. 203-248. Citation from M. Foreman and F. Wehrung, The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set页面存档备份,存于互联网档案馆),"Fundamenta Mathematicae" 138 (1991), p. 13-19.
  5. ^ D. K. Brown and S. G. Simpson, Which set existence axioms are needed to prove the separable Hahn-Banach theorem?, Annals of Pure and Applied Logic, 31, 1986, pp. 123-144. Source of citation页面存档备份,存于互联网档案馆).

参考文献 编辑

  • Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis, Section III.3. Academic Press, San Diego, 1980. ISBN 0-12-585050-6.