# 链复形

（重定向自上链复形

${\displaystyle \ldots \longrightarrow A_{n+1}{\begin{matrix}d_{n+1}\\\longrightarrow \\\,\end{matrix}}A_{n}{\begin{matrix}d_{n}\\\longrightarrow \\\,\end{matrix}}A_{n-1}{\begin{matrix}d_{n-1}\\\longrightarrow \\\,\end{matrix}}A_{n-2}\longrightarrow \ldots \longrightarrow A_{2}{\begin{matrix}d_{2}\\\longrightarrow \\\,\end{matrix}}A_{1}{\begin{matrix}d_{1}\\\longrightarrow \\\,\end{matrix}}A_{0}{\begin{matrix}d_{0}\\\longrightarrow \\\,\end{matrix}}0.}$

${\displaystyle 0\longrightarrow A_{0}{\begin{matrix}d_{0}\\\longrightarrow \\\,\end{matrix}}A_{1}{\begin{matrix}d_{1}\\\longrightarrow \\\,\end{matrix}}A_{2}\longrightarrow \ldots \longrightarrow A_{n-1}{\begin{matrix}d_{n-1}\\\longrightarrow \\\,\end{matrix}}A_{n}{\begin{matrix}d_{n}\\\longrightarrow \\\,\end{matrix}}A_{n+1}\longrightarrow \ldots .}$

## 例子

### 奇异同调

${\displaystyle \partial _{n}:C_{n}(X)\to C_{n-1}(X):\,(\sigma :[v_{0},\ldots ,v_{n}]\to X)\mapsto (\partial _{n}\sigma =\sum _{i=0}^{n}(-1)^{i}\sigma |[v_{0},\ldots ,{\hat {v}}_{i},\ldots ,v_{n}]),}$

${\displaystyle H_{n}(X)=\ker \partial _{n}/{\mbox{im }}\partial _{n+1}}$ .

### 德拉姆上同调

${\displaystyle \Omega ^{0}(M)\to \Omega ^{1}(M)\to \Omega ^{2}(M)\to \Omega ^{3}(M)\to \ldots .}$

${\displaystyle H_{\mathrm {DR} }^{k}(M)=\ker d_{k+1}/{\mbox{im }}d_{k}}$ .

## 鏈同倫

（上）鏈同倫的鏈映射在（上）同調群上誘導出相同的映射。特別是：同倫於恆等映射 id. 的（上）鏈映射是擬同構