打开主菜单

幂運算英语:Exponentiation),又稱指數運算,是數學運算表達式。其中,稱為底數,而稱為指數,通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言電子郵件中,通常寫成b^nb**n,也可視為超運算,記為b[3]n,亦可以用高德納箭號表示法,寫成b↑n,讀作“次方”或「次幂」。

n為正整數, 可以把看作乘方的结果, 等同於自乘次。

當指數為1時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為2時,可以讀作“平方”;指數為 3 時,可以讀作“立方”。

起始值1(乘法的單位元)乘上底數()自乘指數()這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即:

分數為指數的冪定義為,即次方再开方根

0的0次方英语zero to the power of zero目前沒有數學家給予正式的定義。在部分數學領域中,如組合數學,常用的慣例是定義為 1 ,也有人主張定義為 1 。

因為在十进制十的次方很易計算,只需在後面加零即可,所以科学记数法借此簡化記錄的數字;二的幂計算機科學相當重要。

n複數b是正實數時,

exp是指數函數而 ln是自然對數

目录

重要的恆等式编辑

运算法则编辑

  • 同底数幂相乘,底数不变,指数相加:
 
  • 同底数幂相除,底数不变,指数相减:
 
  • 同指数幂相除,指数不变,底数相除:
 

其他等式编辑

  •  
  •  
  •  
  •  
  •  

运算律编辑

加法和乘法存在交换律,比如:  ,但是幂的运算不存在交换律, ,但是 

同样,加法和乘法存在结合律,比如:  ,儘管 ,但是 

整数指数幂编辑

整数指数幂的运算只需要初等代数的知识。

正整数指数幂编辑

表达式 被称作 平方,因为边长为 的正方形面积是 

表达式 被称作 立方,因为邊长为 的正方体体积是 

所以 读作3的平方 读作2的立方

指数表示的是底数反复相乘多少次。比如 ,指数是5,底数是3,表示3反复相乘5次。

或者,整数指数幂可以递归地定义成:

 

指数是1或者0编辑

注意 表示仅仅1个3的乘积,就等于3。

注意    

继续,得到 ,所以 

另一个得到此结论的方法是:通过运算法则 

 时, 

  • 任何数的1次方是它本身。

负数指数编辑

我们定义任何不为0的数的-1次方等于它的倒数。

 

对于非零 定义 。因为当 时分母是0而没有意义。

这个定义是因为 ,当 

 

因为 已经定义了,所以 

或者还可以像定义 0次方一样定义:

通过运算法则 

 时,可以约去分子得 

负数指数 还可以表示成1连续除以  。比如:

 .

特殊数的幂编辑

10的幂编辑

十进制的计数系统中,10的幂写成1后面跟着很多个0。例如: 

因此10的幂用来表示非常大或者非常小的数字。如:299,792,458(真空中光速,单位是米每秒),可以写成  近似值  .

国际单位制词头也使用10的幂来描述特别大或者特别小的数字,比如:词头“千”就是  ,词头“毫”就是  

2的幂编辑

1的幂编辑

1的任何次幂都为1

0的幂编辑

0的正数幂都等于0。

0的负数幂没有定义。

任何非0之数的0次方都是1;而0的0次方是懸而未決的,某些領域下常用的慣例是約定為1。[1]但某些教科書表示0的0次方為無意義。[2]也有人主張定義為1。

负1的幂编辑

-1的奇数幂等于-1

-1的偶数幂等于1

指数非常大时的幂编辑

一个大于1的数的幂趋于无穷大,一个小于-1的数的幂趋于负无穷大

   
   

一个绝对值小于1的数的幂趋于0

   

1的幂永远都是1

   

如果数a趋于1而它的幂趋于无穷,那么极限并不一定是上面几个。一个很重要的例子是:

 

参见e的幂

其他指数的极限参见幂的极限

正实数的实数幂编辑

一个正实数的实数幂可以通过两种方法实现。

  • 有理数幂可以通过N次方根定义,任何非0实数次幂都可以这样定义
  • 自然对数可以被用来通过指数函数定义实数幂

N次方根编辑

 
从上到下: 

一个  次方根是  使 

如果 是一个正实数, 是正整数,那么方程 只有一个正实数。 这个根被称为  次方根,记作: ,其中 叫做根号。或者,  次方根也可以写成 . 例如 

当指数是 时根号上的2可以省略,如: 

有理数幂编辑

有理数指数通常可以理解成

 

e的幂编辑

这个重要的数学常数e,有时叫做欧拉数,近似2.718,是自然对数的底。它提供了定义非整数指数幂的一个方法。 它是从以下极限定义的:

 

指数函数的定义是:

 

可以很简单地证明e的正整数k次方 是:

 
 
 
 
 

实数指数幂编辑

 
y = bx對各種底數b的圖像,分別為綠色的10、紅色的e、藍色的2和青色的1/2。

因为所有实数可以近似地表示为有理数,任意实数指数x可以定义成[3]

 

例如:

 

于是

 

实数指数幂通常使用对数来定义,而不是近似有理数。

自然对数 是指数函数 反函数。 它的定义是:对于任意 ,满足

 

根据对数和指数运算的规则:

 

这就是实数指数幂的定义:

 

实数指数幂 的这个定义和上面使用有理数指数和连续性的定义相吻合。对于复数,这种定义更加常用。

负实数的实数幂编辑

如果 是负数且 偶数,那么 是正數。 如果 是负数且 奇数,那么 是负数。

使用对数和有理数指数都不能将 (其中 是负实数, 实数)定义成实数。在一些特殊情况下,给出一个定义是可行的:负指数的整数指数幂是实数,有理数指数幂对于  是奇数)可以使用 次方根来计算,但是因为没有实数 使 ,对于  是偶数)时必须使用虚数单位 

使用对数的方法不能定义 时的 为实数。实际上, 对于任何实数 都是正的,所以 对于负数没有意义。

使用有理数指数幂来逼近的方法也不能用于负数 因为它依赖于连续性。函数 对于任何正的有理数 是连续的,但是对于负数 ,函数 在有些有理数 上甚至不是连续的。

例如:当 ,它的奇数次根等于-1。所以如果 是正奇数整数,  是奇数,  是偶数。虽然有理数 使 集合稠密集,但是有理数 使 集合也是。所以函数 在有理数域不是连续的。

正实数的复数幂编辑

e的虚数次幂编辑

 
指数函数ez可以通过(1 + z/N)NN趋于无穷大时的极限来定义,那么e就是(1 + /N)N的极限。在这个动画中n从1取到100。(1 + /N)N的值通过N重复增加在复数平面上展示,最终结果就是(1 + /N)N的准确值。可以看出,随着N的增大,(1 + /N)N逐渐逼近极限-1。这就是欧拉公式

复数运算的几何意义和e的幂可以帮助我们理解  是实数)。想象一个直角三角形 (括号内是复数平面内三角形的三个顶点),对于足够大的 ,这个三角形可以看作一个扇形,这个扇形的中心角就等于 弧度。对于所有 ,三角形 互为相似三角形。所以当 足够大时 的极限是复数平面上的单位圆 弧度的点。这个点的极坐标 直角坐标 。所以 。这就是欧拉公式,它通过复数的意义将代数学三角学联系起来了。

等式 的解是一个整数乘以 [4]

 

更一般地,如果 ,那么 的每一个解都可以通过将 的整数倍加上 得到:

 

这个复指数函数是一个有周期 周期函数

更简单的: 

三角函数编辑

根据欧拉公式三角函数余弦和正弦是:

 

历史上,在复数发明之前,余弦和正弦是用几何的方法定义的。上面的公式将复杂的三角函数的求和公式转换成了简单的指数方程

 

使用了复数指数幂之后,很多三角学问题都能够使用代数方法解决。

e的复数指数幂编辑

 可以分解成 。其中   决定了 的方向

正实数的复数幂编辑

如果 是一个正实数, 是任何复数, 定义成 ,其中 是方程 的唯一解。所以处理实数的方法同样可以用来处理复数。

例如:

 
 
 
 

函數编辑

當函數名後有上標的數(即函數的指數),一般指要重複它的運算。例如  。特別地,  反函數

三角函数的情況有所不同,一個正指數應用於函數的名字時,指答案要進行乘方運算,而指數為-1時则表示其反函數。例如: 表示 。因此在三角函數時,使用 來表示 的反函數 

抽象代數编辑

计算自然数(正整数)的算法编辑

最快的方式计算 ,当 是正整数的时候。它利用了测试一个数是奇数在计算机上是非常容易的,和通过简单的移所有位向右来除以2的事实。

偽代碼

   1. 1 → y, n → k, a → f
   2.若k不為0,執行3至6
     3.若k為奇數, y * f → y
     4. k [[位操作#移位|右移]]1位(即k / 2 → k ,小數點無條件捨去)
     5. f * f → f
     6.回到2
   7.傳回y

C/C++语言中,你可以写如下算法:

   double power (double a, unsigned int n)
   {
        double y = 1;
        double f = a;
        unsigned int k = n;
        while (k != 0) {
           if (k % 2 == 1) y *= f;
           k >>= 1;
           f *= f;
        }
        return y;
   }

此算法的時間複雜度 ,比普通算法快(a自乘100次,時間複雜度 ),在 較大的時候更為顯著。

例如計算 ,普通算法需要算100次,上述算法則只需要算7次。若要計算 可先以上述算法計算 ,再作倒數。

註釋编辑

  1. ^ Augustin-Louis Cauchy, Cours d'Analyse de l'École Royale Polytechnique (1821). In his Oeuvres Complètes, series 2, volume 3.
  2. ^ 康軒國中1上《FUN學練功坊①》P.35:a的0次方=1(a≠0)(註:0的0次方為無意義)
  3. ^ Denlinger, Charles G. Elements of Real Analysis. Jones and Bartlett. 2011: 278–283. ISBN 978-0-7637-7947-4. 
  4. ^ This definition of a principal root of unity can be found in:

另見编辑

外部連結编辑