打开主菜单
各种各样的
基本

NumberSetinC.svg

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元數
八元數
十六元數
超實數
大實數
上超實數

雙曲複數
雙複數
複四元數
共四元數英语Dual quaternion
超复数
超數
超現實數

其他

質數
可計算數
基數
阿列夫數
同餘
整數數列
公稱值

規矩數
可定義數
序数
超限数
p進數
數學常數

圓周率
自然對數的底
虛數單位
無窮大

數學裡,代數整數algebraic integer)是複數中的一类。一个複数α是代数整数当且仅当它是某个個系數的首一多項式的根。其中首一(英文:monic)意謂最高次項的系數是1。

因此,所有代數整數都是代數數,但並非所有代數數都是代數整數。所有代数整数构成一个环,通常记作

如果是整係數本原多項式(即系數的最大公因数是1的多项式),但非首一多項式,則的根都不是代數整數。

目录

定义编辑

以下是代数整数四种相互等价的定义。设K代数数域有理数 有限扩张)。根据本原元定理K可以写成 的形式。其中 是某个代数数。设有 ,则α是代数整数当且仅当以下命题之一成立:

  1. 存在整系数多项式: ,使得 
  2. α 上的极小首一多项式是整系数多项式。
  3.  是有限生成的 -
  4. 存在有限生成的 -子模: ,使得 

例子编辑

  • 有理数 中的代数整数就是整数。换句话说,  交集是整数环 。这可以用整系数多项式的一个简单性质证明。如果一个整系数多项式
 
有一个根是有理数: ,其中pq互素的整数,那么必然有:分母q 整除 ,以及分子p 整除 。因此,由于代数整数是某个首一多项式的根,如果它是有理数,那么它的分母整除多项式的最高次項,也就是说整除1。所以这个有理数的分母是1,即是说它是整数。反过来,所有的整数n都是整系数首一多项式 的根,所以是代数整数。
  • 一个给定的代数数域  的交集称为这个数域的(代数)整数环,记作 。这个整数环中的代数整数不再只是整数。比如说,给定一个数域: ,那么对应的整数环中不仅有整数,还有 ,因为 是首一多项式 的根。
  •  不是代数整数。这是因为 在有理数域上的最小多项式 ,不是一个首一多项式。
  •  是一个代数整数。它是多项式 的根。一般来说,如果整数 除以4余1,那么 也是代数整数,因为它是多项式 的根。
  • 给定素数pp单位根 也是一个代数整数,因为是首一多项式 的根。实际上,p分圆域 的整数环就是 

性质编辑

  • 兩個代數整數的和是一個代數整數,他們的差及積也是。這時它們滿足的首一多項式可以用結式表達;但他們的商就不一定是代數整數。
  • 一個以代數整數為系數的首一多項式的根也是代數整數。換句話說,代數整數構成一個,並且在任何代數擴張下是整閉的。
  • 任何從整數出發,透過和、積與开方得到的數都是代數整數,但並非所有代數整數都可依此構造,例如,大多數的五次代數整數都無法透過這種方式構造。
  • 代數整數是裴蜀整环

參見编辑

参考来源编辑

  • Daniel A. Marcus, Number Fields(数域), third edition, Springer-Verlag, 1977