# 色散 (光學)

（重定向自光色散

## 光學中的材料色散

${\displaystyle v={\frac {c}{n}}}$

${\displaystyle \lambda _{\rm {r}}>\lambda _{\rm {y}}>\lambda _{\rm {b}}}$

${\displaystyle 1

${\displaystyle {\frac {{\mathrm {d} }n}{{\mathrm {d} }\lambda }}<0}$

${\displaystyle n(\lambda )=B+{\frac {C}{\lambda ^{2}}}+{\frac {D}{\lambda ^{4}}}+\cdots }$

## 群速度色散

${\displaystyle {\rm {v_{g}}}={\frac {\rm {v_{p}}}{1-{\frac {\omega }{\rm {v_{p}}}}{\frac {\rm {dv_{p}}}{d\omega }}}}.}$

${\displaystyle D=-{\frac {\lambda }{c}}\,{\frac {{\rm {d}}^{2}n}{{\rm {d}}\lambda ^{2}}}.}$

${\displaystyle D=-{\frac {2\pi c}{\lambda ^{2}}}\,{\frac {{\rm {d}}^{2}k}{{\rm {d}}\omega ^{2}}}.}$

## 参考文献

1. ^ 1882-1970., Born, Max,. Principles of optics : electromagnetic theory of propagation, interference and diffraction of light. 7th expanded ed. Cambridge: Cambridge University Press https://web.archive.org/web/20080620012317/http://www.worldcat.org/oclc/40200160. 1999 [2019-01-28]. ISBN 0521642221. OCLC 40200160. （原始内容存档于2008-06-20）. 缺少或|title=为空 (帮助)
2. ^ Dispersion Compensation页面存档备份，存于互联网档案馆） Retrieved 25-08-2015.
3. ^ Born, M. and Wolf, E. (1980) "Principles of Optics, 6th ed." pg. 93. Pergamon Press.
4. ^ Saleh, B.E.A. and Teich, M.C. Fundamentals of Photonics (2nd Edition) Wiley, 2007.