六階正方形鑲嵌

六階正方形鑲嵌
六階正方形鑲嵌
龐加萊圓盤模型
類別 雙曲正鑲嵌
頂點圖 46
考克斯特符號英语Coxeter-Dynkin diagram CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png
施萊夫利符號 {4,6}
威佐夫符號英语Wythoff symbol 6 | 4 2
對稱群 [6,4], (*642)
對偶 四階六邊形鑲嵌
特性 Vertex-transitiveedge-transitiveface-transitive
H2 tiling 246-1.png
四階六邊形鑲嵌
(對偶多面體)

幾何學中, 六階正方形鑲嵌是由正方形組成的雙曲面正鑲嵌圖,每六個正方形共用一個頂點。在施萊夫利符號用{4,6}表示。六階正方形鑲嵌即每個頂點皆為六個正方形的公共頂點,頂點周圍包含了六個不重疊的正方形,一個正方形內角90度,六個正方形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。

對稱性编辑

這個鑲嵌代表一個雙曲的四次反射萬花筒。 這由四個三階交叉反射性在軌型符號英语orbifold notation被稱為(*3333)。 在考斯特表示法可表示為[6,4*], 從三個鏡射線當中移除兩條穿過正方形中心的鏡射線。 *3333對稱性可透過加入平分基本域的鏡射線增倍成663對稱性。

這個交錯塗色的正方形鑲嵌顯示了奇數/偶數的反射對稱群。 這個雙色鑲嵌的wythoff構建英语wythoff construction為t1{(4,4,3)}。而六色鑲嵌對稱群可由六邊形對稱群構造出來。

   
[4,6,1+] = [(4,4,3)] 或 (*443) 對稱性
      =    
[4,6*] = (*222222) 對稱性
      =      


相關的多面體與鑲嵌编辑

多面体 欧式镶嵌 双曲镶嵌
 
{4,2}
     
 
{4,3}
     
 
{4,4}
     
 
{4,5}
     
 
{4,6}
     
 
{4,7}
     
 
{4,8}
     
...  
{4,∞}
     


參見编辑

參考資料编辑

外部連結编辑