打开主菜单

概率論中,切比雪夫不等式英语:Chebyshev's Inequality)顯示了隨機變量的「幾乎所有」值都會「接近」平均。在20世纪30年代至40年代刊行的书中,其被称为比奈梅不等式(英语:Bienaymé Inequality)或比奈梅-切比雪夫不等式(英语:Bienaymé-Chebyshev Inequality)。切比雪夫不等式,对任何分布形状的数据都适用。可表示为:对于任意,有:

目录

概念编辑

這個不等式以數量化這方式來描述,究竟「幾乎所有」是多少,「接近」又有多接近:

  • 與平均相差2個標準差以上的值,數目不多於1/4
  • 與平均相差3個標準差以上的值,數目不多於1/9
  • 與平均相差4個標準差以上的值,數目不多於1/16

……

  • 與平均相差k個標準差以上的值,數目不多於1/k2

舉例說,若一班有36個學生,而在一次考試中,平均分是80分,標準差是10分,我們便可得出結論:少於50分(與平均相差3個標準差以上)的人,數目不多於4個(=36*1/9)。
公式: 

推论编辑

測度論說法编辑

設(X,Σ,μ)為一測度空間f為定義在X上的廣義實可測函數。對於任意實數t > 0,

 

一般而言,若g是非負廣義實值可測函數,在f的定義域非降,則有

 

上面的陳述,可透過以|f|取代f,再取如下定義而得:

 

概率論說法编辑

 為隨機變量,期望值 标准差 。對於任何實數k>0,

 

改進编辑

一般而言,切比雪夫不等式給出的上界已無法改進。考慮下面例子:

 
 

這個分布的標準差  

对于任意分布形态的数据,根据切比雪夫不等式,至少有   的数据落在k个标准差之内。其中k>1,但不一定是整数。

當只求其中一邊的值的時候,有Cantelli不等式

 [1]

證明编辑

定義 ,設 為集 指標函數,有

 
 

又可從馬爾可夫不等式直接證明:馬氏不等式說明對任意隨機變量Y和正數a 。取  

亦可從概率論的原理和定義開始證明:

 
 

參見编辑

参考来源编辑

  • 《基本統計學 觀念與應用二版》,林惠玲 陳正倉 著
  • 《應用統計學 第四版》 修訂版,林惠玲 陳正倉 著