打开主菜单

自伴算子

(重定向自厄米算符

數學裏,作用於一個有限維的酉空間,一個自伴算子self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值對角矩陣

量子力學编辑

量子力學裏,自伴算子,又稱為自伴算符,或厄米算符Hermitian operator),是一種等於自己的厄米共軛算符。給予算符 和其伴隨算符 ,假設  ,則稱 為厄米算符。厄米算符的期望值可以表示量子力学中的物理量。

可觀察量编辑

由於每一種經過測量而得到的物理量都是實值的。所以,可觀察量 的期望值是實值的:

 

對於任意量子態 ,這關係都成立;

 

根據伴隨算符的定義,假設  的伴隨算符,則 。因此,

 

這正是厄米算符的定義。所以,表示可觀察量的算符 ,都是厄米算符。

可觀察量,像位置動量角動量,和自旋,都是用作用於希爾伯特空間的自伴算符來代表。哈密頓算符 是一個很重要的自伴算符,表達為

 

其中, 是粒子的波函數 約化普朗克常數 質量 位勢

哈密頓算符所代表的哈密頓量是粒子的總能量,一個可觀察量

動量是一個可觀察量,動量算符應該也是厄米算符:選擇位置空間,量子態 的波函數為 

 

對於任意量子態  。所以,動量算符確實是一個厄米算符。

參考文獻编辑

Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004: pp. 96–106. ISBN 0-13-111892-7.