打开主菜单
多面形
多面形
以六面形為例
類別 正多面體
球面鑲嵌
n
n
頂點 2
歐拉特徵數 F=n, E=n, V=2 (χ=2)
面的種類 n個二角形
頂點圖 2n
頂點佈局英语Vertex_configuration 2n
考克斯特符號英语Coxeter-Dynkin diagram CDel node.pngCDel n.pngCDel node.pngCDel 2.pngCDel node 1.png
施萊夫利符號 {2,n}
威佐夫符號英语Wythoff symbol n | 2 2
對稱群 Dnh, [2,n], (*22n), order 4n
對偶 多邊形二面體
旋轉對稱群英语Point_groups_in_three_dimensions#Rotation_groups Dn, [2,n]+, (22n), order 2n
Hexagonal dihedron.png
多邊形二面體
(對偶多面體)

幾何學中,多面形英语:Hosohedron)是一種由月牙形或球弓形組成的球面鑲嵌,並且使得每一個月牙形或球弓形共用相同的兩個頂點。其在施萊夫利符號中用 {2, n} 表示n面形。

其亦可以視為由球面正二角形組成的球面鑲嵌圖,又稱為二角形鑲嵌或二邊形鑲嵌

目录

正多面形编辑

施萊夫利符號中以{m, n}表示的正多面體,其面的個數存在下列等式:

 

自古以來大家所熟知的正多面體——柏拉圖立體是當m≥3且n≥3的整數解,限制在m≥3的狀態下,多邊形面必須至少有三條邊。

當考慮多面體為球面鑲嵌時,該限制可以放寬,因為二角形(二邊形)可以以球弓形或月牙形存在,即球面二角形具有非零面積。當m=2時則會產生一個新的無窮集合,即多面形。在球面上,所述多面體{2, n}表示當n個球弓形組合,並且具有2π/n內角。所有二角形階共用相同的兩個頂點,即每個頂點皆為所有二角形的公共頂點。

每個正多面形都是n階二邊形鑲嵌。

 
一個正三面形,{2,3},以三個月牙形鑲嵌於求面表示。又稱三階二邊形鑲嵌。
 
一個正四面形,以四個月牙形鑲嵌於求面表示。又稱四階二邊形鑲嵌。
正多面形系列
1 2 3 4 5 6 7 8 9 10 11 12 ...
   
{2,1}
     
{2,2}
     
{2,3}
     
{2,4}
     
{2,5}
     
{2,6}
     
{2,7}
     
{2,8}
     
{2,9}
      
{2,10}
      
{2,11}
      
{2,12}
                       

命名编辑

英文Hosohedron一詞由考克斯特命名,其來自希臘語ὅσος (osos/hosos),是『盡可能多』的意思,其意思為『盡可能達到很多的面的形狀[1]』因此稱為多面形。

多維面形编辑

多維面形是多面形在高維度的類比,表示有多個維面的幾何圖形。任何正的維面形都可以以施萊夫利符號{2,p,...,q}表示

多維面形
施萊夫利
{2,p,q}
考克斯特符号英语Coxeter-Dynkin diagram
       

{2,p}π/q

{2}π/p,π/q
頂點 頂點圖
{p,q}
對稱性 對偶多胞形
{2,3,3}         4
{2,3}π/3
 
6
{2}π/3,π/3
4 2 {3,3}
 
[2,3,3] {3,3,2}
{2,4,3}         6
{2,4}π/3
 
12
{2}π/4,π/3
8 2 {4,3}
 
[2,4,3] {3,4,2}
{2,3,4}         8
{2,3}π/4
 
12
{2}π/3,π/4
6 2 {3,4}
 
[2,4,3] {4,3,2}
{2,5,3}         12
{2,5}π/3
 
30
{2}π/5,π/3
20 2 {5,3}
 
[2,5,3] {3,5,2}
{2,3,5}         20
{2,3}π/5
 
30
{2}π/3,π/5
12 2 {3,5}
 
[2,5,3] {5,3,2}

參見编辑

參考文獻编辑