# 多面形

類別 以六面形為例 正多面體球面鑲嵌 多邊形二面體 .mw-parser-output .CDD-invert img{filter:invert(100%)}.mw-parser-output .CDD-white img{filter:contrast(0)brightness(100)}.mw-parser-output .CDD-red img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(1000)}.mw-parser-output .CDD-yellow img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(15)hue-rotate(30deg)saturate(10)}.mw-parser-output .CDD-orange img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(10)}.mw-parser-output .CDD-green img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(1000)hue-rotate(120deg)}.mw-parser-output .CDD-cyan img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(15)hue-rotate(180deg)saturate(10)}.mw-parser-output .CDD-blue img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(1000)hue-rotate(-120deg)}.mw-parser-output .CDD-purple img{filter:brightness(0%)contrast(0%)sepia(100%)saturate(15)hue-rotate(-140deg)saturate(10)} {2,n} n | 2 2 ${\displaystyle n}$ ${\displaystyle n}$ ${\displaystyle 2}$ F=${\displaystyle n}$, E=${\displaystyle n}$, V=${\displaystyle 2}$ （χ=2） n個二角形 2n 2n Dnh, [2,n], (*22n), order 4n Dn, [2,n]+, (22n), order 2n 註：${\displaystyle n}$為底面邊數 。 .mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin:0;display:inline}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist dt:after{content:" :"}.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li:after{content:"，"}.mw-parser-output .sslist li:after{content:"；"}.mw-parser-output .cslist li:last-child:after,.mw-parser-output .sslist li:last-child:after{content:none}.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}

## 正多面形

${\displaystyle N_{2}={\frac {4n}{2m+2n-mn}}}$

 一個正三面形，{2,3}，以三個月牙形鑲嵌於求面表示。又稱三階二邊形鑲嵌。 一個正四面形，以四個月牙形鑲嵌於求面表示。又稱四階二邊形鑲嵌。

1 2 3 4 5 6 7 8 9 10 11 12 ... iπ

{2,1}

{2,2}

{2,3}

{2,4}

{2,5}

{2,6}

{2,7}

{2,8}

{2,9}

{2,10}

{2,11}

{2,12}

{2,∞}

{2,iπ/λ}

## 多維面形

{2,p,q}

{2,p}π/q

{2}π/p,π/q

{p,q}

{2,3,3}         4
{2,3}π/3

6
{2}π/3,π/3
4 2 {3,3}

[2,3,3] {3,3,2}
{2,4,3}         6
{2,4}π/3

12
{2}π/4,π/3
8 2 {4,3}

[2,4,3] {3,4,2}
{2,3,4}         8
{2,3}π/4

12
{2}π/3,π/4
6 2 {3,4}

[2,4,3] {4,3,2}
{2,5,3}         12
{2,5}π/3

30
{2}π/5,π/3
20 2 {5,3}

[2,5,3] {3,5,2}
{2,3,5}         20
{2,3}π/5

30
{2}π/3,π/5
12 2 {3,5}

[2,5,3] {5,3,2}

## 參考文獻

1. ^ Steven Schwartzman. The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English. MAA. 1 January 1994: 108–109 [2014-06-19]. ISBN 978-0-88385-511-9. （原始内容存档于2014-06-26）.
2. ^ Draghicescu, Mircea; et al. Single-threaded Polyhedra Models. Bridges 2020 Conference Proceedings (Tessellations Publishing). 2020: 281–288 [2022-12-22]. （原始内容存档于2022-12-22）.
3. ^ glossary§lucanicohedron. weddslist.com. [2022-12-22]. （原始内容存档于2021-05-07）.
4. ^ Draghicescu, Mircea. Building Polyhedra Models for Mathematical Art Projects and Teaching Geometry (PDF). Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture. 2019: 629–634 [2022-12-23]. （原始内容存档 (PDF)于2022-12-23）.