打开主菜单

夾擠定理

有关函数极限的定理

夾擠定理,又稱夹逼定理三明治定理,是有關函數極限定理。它指出若有兩個函數在某點的極限相同,且有第三個函數的值在這兩個函數之間,则第三個函數在該點的極限也相同。

為包含某點區間為定義在上的函數。若對於所有屬於而不等於,有:

分別稱為下界上界

若在的端點,上面的極限是左極限或右極限。 對於,這個定理還是可用的。

目录

例子编辑

 编辑

在任何包含0的區間上,除了  均有定義。

對於實數值,正弦函數的絕對值不大於1,因此 的絕對值也不大於 。設 ,  

 
 
 

 ,根據夾擠定理

 

(注:這個問題不可以用洛必達法則解決。)

 编辑

首先用幾何方法證明:若  

稱(1,0)為D。A是單位圓圓周右上部分的一點。  上,使得 垂直 。過 作單位圓的切線,與 的延長線交於 

由定義可得  

 
 
 
 
 
 

因為 ,根據夾擠定理

 

另一邊的極限可用這個結果求出。

高斯函數编辑

高斯函數積分的應用包括連續傅立葉變換和正交化。 一般高斯函數的積分是 ,現在要求的是 

被積函數對於y軸是對稱的,因此 是被積函數對於所有實數的積分的一半。

 

這個二重積分在一個 的正方形內。它比其內切圓大,比外接圓小。這些可用極坐標表示:

 
 
 
 
 

證明编辑

極限為0的情況编辑

  ,而且 

 ,根據函數的極限的定義,存在 使得:若 ,則 

由於  ,故 

 ,則 。於是, 

一般情況编辑

 

 

 

 
根據上面已證的特殊情況,可知