# 反常積分

（重定向自广义积分

## 第一類反常積分

### 定義

${\displaystyle \int _{a}^{\infty }f(x)\,dx=\lim _{u\to +\infty }\int _{a}^{u}f(x)\,dx}$

${\displaystyle \int _{-\infty }^{a}f(x)\,dx=\lim _{u\to -\infty }\int _{u}^{a}f(x)\,dx}$

${\displaystyle \int _{1}^{\infty }{\frac {1}{x^{2}}}\,dx=\lim _{u\to +\infty }\int _{1}^{u}{\frac {1}{x^{2}}}\,dx=1}$
${\displaystyle \int _{1}^{\infty }{\frac {1}{x}}\,dx=\lim _{u\to +\infty }\int _{1}^{u}{\frac {1}{x}}\,dx=+\infty }$ ，即發散；
${\displaystyle \int _{1}^{\infty }x\sin x\,dx=\lim _{u\to +\infty }\int _{1}^{u}x\sin x\,dx}$  ，振動發散。

### 推廣定義

${\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=\lim _{u\to -\infty }\lim _{v\to +\infty }\int _{u}^{v}f(x)\,dx}$

${\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=\lim _{u\to -\infty }\int _{u}^{c}f(x)\,dx+\lim _{v\to +\infty }\int _{c}^{v}f(x)\,dx}$

${\displaystyle \int _{-\infty }^{\infty }xe^{-x^{2}}\,dx=\lim _{u\to -\infty }\int _{u}^{0}xe^{-x^{2}}\,dx+\lim _{v\to +\infty }\int _{0}^{v}xe^{-x^{2}}\,dx=-{\frac {1}{2}}+{\frac {1}{2}}=0}$
${\displaystyle \int _{-\infty }^{\infty }x\,dx=\lim _{u\to -\infty }\int _{u}^{0}x\,dx+\lim _{v\to +\infty }\int _{0}^{v}x\,dx=-\infty +\infty }$ ，即發散。

### 與柯西主值的聯繫

${\displaystyle \mathrm {PV} \int _{-\infty }^{\infty }f(x)\,dx=\lim _{R\to +\infty }\int _{-R}^{R}f(x)\,dx}$

${\displaystyle \mathrm {PV} \int _{-\infty }^{\infty }x\,dx=\lim _{R\to +\infty }\int _{-R}^{R}x\,dx=0}$

## 第二類反常積分

### 定義

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to a^{+}}\int _{u}^{b}f(x)\,dx}$

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to b^{-}}\int _{a}^{u}f(x)\,dx}$

${\displaystyle \int _{0}^{3}{\frac {1}{\sqrt {3-x}}}\,dx=\lim _{u\to 3^{-}}\int _{0}^{u}{\frac {1}{\sqrt {3-x}}}\,dx=2{\sqrt {3}}}$
${\displaystyle \int _{0}^{1}{\frac {1}{x^{2}}}\,dx=\lim _{u\to 0^{+}}\int _{u}^{1}{\frac {1}{x^{2}}}\,dx=+\infty }$ ，即發散。

### 推廣定義

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to a^{+}}\lim _{v\to b^{-}}\int _{u}^{v}f(x)\,dx}$

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to a^{+}}\int _{u}^{c}f(x)\,dx+\lim _{v\to b^{-}}\int _{c}^{v}f(x)\,dx}$

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to c^{-}}\int _{a}^{u}f(x)\,dx+\lim _{v\to c^{+}}\int _{v}^{b}f(x)\,dx}$

${\displaystyle \int _{-1}^{1}{\frac {1}{\sqrt[{3}]{x^{2}}}}\,dx=\lim _{u\to 0^{-}}\int _{-1}^{u}{\frac {1}{\sqrt[{3}]{x^{2}}}}\,dx+\lim _{v\to 0^{+}}\int _{v}^{1}{\frac {1}{\sqrt[{3}]{x^{2}}}}\,dx=6}$
${\displaystyle \int _{-1}^{1}{\frac {1}{x}}\,dx=\lim _{u\to 0^{-}}\int _{-1}^{u}{\frac {1}{x}}\,dx+\lim _{v\to 0^{+}}\int _{v}^{1}{\frac {1}{x}}\,dx=-\infty +\infty }$ ，即發散。

### 與柯西主值的聯繫

${\displaystyle \mathrm {PV} \int _{a}^{b}f(x)\,dx=\lim _{\varepsilon \to 0^{+}}\int _{a+\varepsilon }^{b-\varepsilon }f(x)\,dx}$

${\displaystyle \mathrm {PV} \int _{a}^{b}f(x)\,dx=\lim _{\varepsilon \to 0^{+}}\left[\int _{a}^{c-\varepsilon }f(x)\,dx+\int _{c+\varepsilon }^{b}f(x)\,dx\right]}$

${\displaystyle \mathrm {PV} \int _{-1}^{1}{\frac {1}{x}}\,dx=\lim _{\varepsilon \to 0^{+}}\int _{-1+\varepsilon }^{1-\varepsilon }{\frac {1}{x}}\,dx=0}$