在绕一个点旋转之后绕另一个不同的点的平面旋转导致要么是旋转(如本图)要么是
平移的一个总和运动。
在针对一个轴的反射之后的针对不平行于前一个轴的
反射导致是绕两个轴的交点的旋转的一个总和运动。
在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。
在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的 被旋转了 并希望知道旋转后的坐标 :
-
或
-
-
平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是 ,同一个向量在新平面中的坐标是 ,则:
-
或
-
-
向量 的大小同于向量 的大小(正交变换是保距映射)。
一个是点的旋转,坐标系没动,得到的是:动的点在原来坐标系下的表示。
另一个是坐标系的旋转,点是不动的,得到的是:不动的点在动了的坐标系下的表示。
坐标或向量关于原点的逆时针旋转 平面或轴关于原点的顺时针旋转。
坐标或向量关于原点的顺时针旋转 平面或轴关于原点的逆时针旋转。
顺时针(逆时针)旋转可以理解为逆时针(顺时针)旋转一个负角度,根据 , 的奇偶性,即 , 可在逆时针旋转和顺时针旋转的变换公式之间相互转换。
复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设
-
是这样一个复数。它的实部是横坐标而虚部是纵坐标。
则z可逆时针旋转角度θ,通过乘以 (参见欧拉公式, §2)。
|
|
|
|
|
|
|
|
这可以被看作对应于在§ 1中描述的旋转。
因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。[1]