打开主菜单
如果c点属于曼德博集合M则为黑色,反之为白色

曼德博集合(Mandelbrot set,或译為曼德布洛特复数集合)是一种在复平面上组成分形的点的集合,以數學家本華·曼德博的名字命名。曼德博集合與朱利亚集合有些相似的地方,例如使用相同的复二次多项式來进行迭代

定义编辑

曼德博集合可以用复二次多项式来定义:

 

其中   是一个复数參数。

  开始对   进行迭代

 
 
 
 

每次迭代的值依序如以下序列所示:

 

不同的参数   可能使序列绝对值逐漸發散到无限大,也可能收斂在有限的區域内。

曼德博集合   就是使序列不延伸至无限大的所有复数  集合

特性编辑

  • 自相似
  • 面积为1.5065918561[1][2]

相關的定理编辑

定理一编辑

 ,則  

證明:编辑

假設   為真

 

第一步:编辑

 

 

因為  

 

由以上可得知  

第二步:编辑

假設   成立

 

由上式可得知  

由數學歸納法可得知對於所有的n(n=1,2,...),  皆比   小。

當n趨近無限大時   依然沒有發散,所以  ,故得證。


定理二编辑

 ,則  

證明:编辑

假設  

 

第一步:编辑

 

 

 ,左右同乘   再減去   可得到下式

 

由以上可得知  

第二步:编辑

假設   成立,則  

 

因為  

 

 ,左右同乘   再減去   可得到下式

 

由以上可得知  

由數學歸納法可得知  ,可看出隨著迭代次數增加   逐漸遞增並發散。

假如 不发散,则收敛于某个常数 ,

  再取极限得   

 ,矛盾,故 发散。


所以若  ,則  ,故得證。

定理三编辑

 ,則  

證明:编辑

要證明若  ,則  

首先分別探討    兩種情形

由定理二可知道    時,  

接著要證明   時的情況:

假設  ,因為   ,所以   ,而

 

因為  

 

 ,左右同乘   再減去   可得到下式

 

由以上可得知  

由數學歸納法可得知  ,可看出隨著迭代次數增加   逐漸遞增並發散。

所以在    的情況下也是  

綜合上述可得知不論  為多少

 ,則  ,故得證。

利用定理三可以在程式計算時快速地判斷  是否會發散。

计算的方法编辑

曼德博集合一般用计算机程序计算。对于大多数的分形软件,例如Ultra fractal,内部已经有了比较成熟的例子。下面的程序是一段伪代码,表达了曼德博集合的计算思路。

For Each c in Complex
 repeats = 0
 z = 0
 Do
  z = z^2 + c
  repeats = repeats + 1
 Loop until abs(z) > EscapeRadius or repeats > MaxRepeats '根据定理三,EscapeRadius可设置为2。
 If repeats > MaxRepeats Then
  Draw c,Black                                            '如果迭代次数超过MaxRepeats,就将c认定为属于曼德博集合,并设置为黑色。
 Else
  Draw c,color(z,c,repeats)                               'colo函数用来决定颜色。
 End If
Next

決定顏色的一些方法编辑

  1. 直接利用循环终止时的Repeats
  2. 综合利用z和Repeats
  3. Orbit Traps


Mathematica代码编辑

mand = Compile[{{z0, _Complex}, {nmax, _Integer}}, 
   Module[{z = z0, i = 1}, 
    While[i < nmax && Abs[z] <= 2, z = z^2 + z0; i++]; i]];
ArrayPlot[
 Reverse@Transpose@
   Table[mand[x + y I, 500], {x, -2, 2, 0.01}, {y, -2, 2, 0.01}]]

各種圖示编辑

動畫
 
點撃此圖像可觀看動態影像。
 
最原始圖片
 
放大等級1
 
放大等級2
 
放大等級3
 
放大等級4
 
放大等級5
 
放大等級6
 
放大等級7
 
放大等級8
 
放大等級9
 
放大等級10
 
放大等級11
 
放大等級12
 
放大等級13
 
放大等級14

參考資料编辑