# 柯西主值

## 第一類反常積分

${\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=\lim _{u\to -\infty }\int _{u}^{c}f(x)\,dx+\lim _{v\to +\infty }\int _{c}^{v}f(x)\,dx}$

${\displaystyle \mathrm {PV} \int _{-\infty }^{\infty }f(x)\,dx=\lim _{R\to +\infty }\int _{-R}^{R}f(x)\,dx}$

{\displaystyle {\begin{aligned}\mathrm {PV} \int _{-\infty }^{\infty }x\,dx&=\lim _{R\to +\infty }\int _{-R}^{R}x\,dx\\&=\lim _{R\to +\infty }\left[{\frac {x^{2}}{2}}\right]_{-R}^{R}\\&=\lim _{R\to +\infty }\left({\frac {R^{2}}{2}}-{\frac {R^{2}}{2}}\right)\\&=0\end{aligned}}}

## 第二類反常積分

${\displaystyle \int _{a}^{b}f(x)\,dx=\lim _{u\to a^{+}}\int _{u}^{c}f(x)\,dx+\lim _{v\to b^{-}}\int _{c}^{v}f(x)\,dx}$

${\displaystyle \int _{a}^{b}g(x)\,dx=\lim _{u\to c^{-}}\int _{a}^{u}g(x)\,dx+\lim _{v\to c^{+}}\int _{v}^{b}g(x)\,dx}$

${\displaystyle \mathrm {PV} \int _{a}^{b}f(x)\,dx=\lim _{\varepsilon \to 0^{+}}\int _{a+\varepsilon }^{b-\varepsilon }f(x)\,dx}$
${\displaystyle \mathrm {PV} \int _{a}^{b}g(x)\,dx=\lim _{\varepsilon \to 0^{+}}\left[\int _{a}^{c-\varepsilon }g(x)\,dx+\int _{c+\varepsilon }^{b}g(x)\,dx\right]}$

## 混合反常積分

${\displaystyle \mathrm {PV} \int _{-\infty }^{\infty }f(x)\,dx=\lim _{\varepsilon \to 0^{+}}\left[\int _{c-{\frac {1}{\varepsilon }}}^{c-\varepsilon }f(x)\,dx+\int _{c+\varepsilon }^{c+{\frac {1}{\varepsilon }}}f(x)\,dx\right]}$

## 計算問題

{\displaystyle {\begin{aligned}\mathrm {PV} \int _{-2}^{1}{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx&=\mathrm {PV} \int _{-2}^{0}{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx+\mathrm {PV} \int _{0}^{1}{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx\\&=\lim _{\varepsilon \to 0^{+}}\left(\int _{-2}^{-\varepsilon }{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx+\int _{\varepsilon }^{1}{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx\right)\\&=\lim _{\varepsilon \to 0^{+}}\left(\left[-{\frac {1}{x^{2}(5+x)^{2}}}\right]_{-2}^{-\varepsilon }+\left[-{\frac {1}{x^{2}(5+x)^{2}}}\right]_{\varepsilon }^{1}\right)\\&=\lim _{\varepsilon \to 0^{+}}\left(-{\frac {1}{\varepsilon ^{2}(5-\varepsilon )^{2}}}+{\frac {1}{4(5-2)^{2}}}-{\frac {1}{(5+1)^{2}}}+{\frac {1}{\varepsilon ^{2}(5+\varepsilon )^{2}}}\right)\\&=\lim _{\varepsilon \to 0^{+}}{\frac {-20\varepsilon }{\varepsilon ^{2}(5-\varepsilon )^{2}(5+\varepsilon )^{2}}}\\&=-\infty \end{aligned}}}

{\displaystyle {\begin{aligned}\mathrm {PV} \int _{-2}^{1}{\frac {10+4x}{x^{3}(5+x)^{3}}}\,dx&=\mathrm {PV} \int _{-6}^{6}{\frac {2}{u^{3}}}\,du\\&=\mathrm {PV} \int _{-6}^{0}{\frac {2}{u^{3}}}\,du+\mathrm {PV} \int _{0}^{6}{\frac {2}{u^{3}}}\,du\\&=\lim _{\varepsilon \to 0^{+}}\left(\int _{-6}^{-\varepsilon }{\frac {2}{u^{3}}}\,du+\int _{\varepsilon }^{6}{\frac {2}{u^{3}}}\,du\right)\\&=\lim _{\varepsilon \to 0^{+}}\left(\left[-{\frac {1}{u^{2}}}\right]_{-6}^{-\varepsilon }+\left[-{\frac {1}{u^{2}}}\right]_{\varepsilon }^{6}\right)\\&=\lim _{\varepsilon \to 0^{+}}\left(-{\frac {1}{\varepsilon ^{2}}}+{\frac {1}{36}}-{\frac {1}{36}}+{\frac {1}{\varepsilon ^{2}}}\right)\\&=0\end{aligned}}}

## 名稱和記號

${\displaystyle \mathrm {PV} \int f(x)\,dx}$
${\displaystyle \mathrm {p.v.} \int f(x)\,dx}$
${\displaystyle -\!\!\!\!\!\!\int f(x)\,dx}$