梯形公式

梯形公式數學数值积分的基础公式之一:

線性函數(紅色)會作用估算函數 (藍色)。

公式由来编辑

积分中值定理可得

 

但由于ξ其值一般难于确定,故难以准确算出f(ξ)的值。

如果用两端点f(a)与f(b)的算术平均值估算f(ξ),有

 

这就是梯形公式。

类似地,如果用区间中点 其高度f(c)取代f(ξ),从而有中矩形公式

 

复合求积公式编辑

每一區間相同编辑

 
梯形公式的示意圖(長度相同的區間)。

為了計算出更加準確的定積分,可以把積分的區間 分成 份,當中 趨向無限,分割出的每一個區間長度必定要是一樣的,然後就可以應用梯形公式:

 

亦可以寫成:

 

當中

 

其余项为

 

當區間的長度並不相同時,這一條公式便不能使用。

每一區間並不相同编辑

 
梯形公式的示意圖(長度不相同的區間)

給予 以及 定積分就可以估算成

 ,

當中

 .

誤差分析编辑

應用梯形公式的誤差值是真值數字與運用梯形公式結果的差異:

 

如果 (a, b) 中存在一個實數ξ,那麼

 

对于中矩形公式,其误差类似的有:

 

如果被積函數是一個凸函數(亦即有一個正值二階導數),那麼誤差會是一個負數,也代表梯形公式的估算值高估了真實數字。這可以利用一個幾何圖形代去表達:梯形不但覆蓋曲線下的面積更超越其範圍。同樣地,如果被積函數是一個凹函數,梯形公式就會低估其真實數字因為曲線下部份面積沒有被計算在內。如果被積函數中有拐點。它的錯誤是比較難去估計。

一般而言有數種方法可以去分析誤差,例如是:傅利葉級數

N → ∞的情況下,趨向性的估計誤差是:

 

参考文献编辑

  • 《数值分析》,清华大学出版社,李庆扬等编,书号ISBN 978-7-302-18565-9