打开主菜单
正十二面體
正十二面體
(按這裡觀看旋轉模型)
類別 正多面体
12
30
頂點 20
歐拉特徵數 F=12, E=30, V=20 (χ=2)
面的種類 正五邊形
面的佈局英语Face configuration 12{5}
頂點圖 5.5.5
施萊夫利符號 {5,3}
對稱群 3
參考索引 U23, C26, W5
對偶 正二十面體
二面角 116.56505° = arccos(-1/√5)
特性 多面體
Dodecahedron vertfig.png
5.5.5
頂點圖
Dodecahedron flat.svg
(展開圖)

正十二面體是由12正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号{5,3}所表示,与正二十面体互成对偶。它是一种只具有正四面体对称性英语tetrahedral symmetry五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有正八面体对称性英语Octahedral Symmetry卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體

Uniform polyhedron-53-t0.png
十二面體
Dodekaeder-Animation.gif
正十二面體是正二十面體對偶多面體

目录

性质编辑

面的图形:正五边形
面的数目:12
边的数目:30
顶点数目:20
二面角角度: 
如果正十二面体棱长为a:
表面积: 
体积: 
外接球半径: 
内切球半径: 
中交球半径: 

  • 我们亦可以将上述三式写作:
外接球半径: 
内切球半径: 
中交球半径: 
(在这里φ黄金分割数φ = 1+√5/2
  • 注意到棱长为a的正十二面体的外接球同样外接于棱长为φa的立方体,并且其内切球半径(也即面心距)等于棱长为φa的正五边形的边心距

对偶多面体:正二十面体

坐标系编辑

 
顶点坐标:
     橙色的顶点位于(±1, ±1, ±1),形成了其一个内接立方体(虚线所示)。
     绿色的顶点位于(0, ±φ, ±1/φ),形成了yz平面上的一个黄金矩形
     蓝色的顶点位于(±1/φ, 0, ±φ),形成了xz平面上的一个黄金矩形
     粉色的顶点位于(±φ, ±1/φ, 0),形成了xy平面上的一个黄金矩形
相邻顶点间的距离是2/φ,顶点到原点的距离是√3.
φ = (1 + √5) / 2是黄金分割数。

如果我们以正十二面体的形心为原点建立三维直角坐标系,那么其20个顶点可被描述为:
(0,±φ,±1/φ)
(±1/φ,0,±φ)
(±φ,±1/φ,0)
(±1,±1,±1)
其中φ = (1+√5)/2,是黃金分割數,也被写作τ,约等于1.618。
该正十二面体棱长为2/φ=√5–1。其外接球半径正好为√3。

二维投影和对称性编辑

正十二面体有两种特殊的正交投影,分别正对着其一个顶点和一个正五边形面,对应着A2和H2考克斯特平面英语Coxeter plane

正交投影
正对于 顶点
图像      
投影
对称性
[[3]] = [6] [2] [[5]] = [10]

透视投影中,如果如果投影中心正在正十二面体外接球正对其一面的一点,则你能得到其施莱格尔图像英语schlegel diagram,我们亦可以将其视为球面多面体英语Spherical polyhedron而使用球极投影。这些方法也被用于可视化其四维类比正一百二十胞体,一个由120个全等的正十二面体组成的四维凸正多胞体

投影 正交投影 透视投影
施莱格尔图像英语schlegel diagram 球极投影
正十二面体      
正120胞体      

几何关联编辑

  • 正十二面体是一个无穷家族——截顶偏方面体的第3个成员(截顶五偏方面体)。这类多面体可以被看作是将偏方面体在旋转对称轴上的两个相对的顶点截去而成。
  • 正十二面体的星形化体英语Stellation构成了4个星形正多面體中的3个。
  • 我们可以在正十二面体的20个顶点中选取5组这样的顶点,使任意两个顶点的连线都是正十二面体正五边形面的一条对角线,这样能构成正十二面体的内接立方体,5个内接立方体一起构成了——复合多面体——五复合立方体;我们还可以进一步对内接立方体做交错操作,得到正十二面体的内接正四面体,如果我们只在内接立方体中取一个正四面体,则5个正四面体构成了有手征性的复合多面体——五复合四面体;如果取两个,则10个正四面体构成了复合多面体——十复合四面体,这三个复合多面体都是正十二面体的小面化体英语faceting
  • 正十二面体的完全对称群是正二十面体对称群英语Icosahedral symmetryIh考克斯特群[5,3],群阶120,还有一个抽象群结构A5×Z2

与其对偶——正二十面体的关系编辑

  • 当正十二面体和正二十面体内接于同一球时,尽管正二十面体有更多的面,但正十二面体占据球的体积(66.49%)要多于正二十面体占据的球的体积(60.54%),这一点与二维不同。
  • 棱长相同为1的正十二面体的体积(7.663...)是正二十面体体积(2.181...)的三倍半多。

相关多面体编辑

正十二面体在拓扑上与一系列三阶正镶嵌(顶点图n3)有关:

多面体 欧式镶嵌 双曲镶嵌
 
{2,3}
     
 
{3,3}
     
 
{4,3}
     
 
{5,3}
     
 
{6,3}
     
 
{7,3}
     
 
{8,3}
     
...  
{∞,3}
     

正十二面體在拓撲上還和其它階的正五邊形正鑲嵌{5,n}(n≥3)有關:

多面体 欧式镶嵌 双曲镶嵌
 
{5,2}
     
 
{5,3}
     
 
{5,4}
     
 
{5,5}
     
 
{5,6}
     
 
{5,7}
     
 
{5,8}
     
...  
{5,∞}
     

正十二面体可以通过不同类型的截取操作来得到一系列不同的半正多面体及其对偶,正二十面体,构成了正二十面体家族:

正二十面体家族半正多面体
對稱群: [5,3], (*532) [5,3]+, (532)
                                               
               
{5,3} t0,1{5,3} t1{5,3} t0,1{3,5} {3,5} t0,2{5,3} t0,1,2{5,3} s{5,3}
半正多面体对偶
                                               
               
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

顶点分布编辑

正十二面体与4个星形半正多面体英语nonconvex uniform polyhedron和上述3个复合半正多面体有同样的顶点分布:

 
大星形十二面体
 
小双三斜三十二面体
 
双三斜二十四面体
 
大双三斜三十二面体
 
五复合立方体
 
五复合四面体
 
十复合四面体

星形化体编辑

正十二面体的3个星形化体英语stellation都是星形正多面体(开普勒-普索多面体):

0 1 2 3
星形化体  
正十二面体
 
小星形十二面体
 
大十二面体
 
大星形十二面体
表面图形        

倒角多面體编辑

類別 正多面體 卡塔蘭立體
種子  
{3,3}
 
{4,3}
 
{3,4}
 
{5,3}
 
{3,5}
 
aC
 
aD
倒角  
cT
 
cC
 
cO英语Chamfered octahedron
 
cD
 
cI
 
caC
 
caD

相关数学问题编辑

  • 哈密頓路徑的理論就是源自一個和正十二面體有關的問題:試求一條路徑,沿正十二面體的棱經過它所有的頂點。

真實世界编辑

  • 因為一年有12個月,正十二面體正好用來製作月曆。[1]
  • Pariacoto virus的形狀結構是正十二面體。
  • 英國匈牙利,至到意大利東部等地,找到過百個形狀接近十二面體、以或石頭製造的空心物件。它們被稱為Dodecaeder,用途不明。[2][3]
  • 五魔方(Megaminx)就是正十二面体制作出来的魔方。
 
正十二面烷

化學:

參考文獻编辑