# 殆素数

${\displaystyle \Omega (n):=\sum a_{i}\qquad {\mbox{if}}\qquad n=\prod p_{i}^{a_{i}}}$

k k次殆素数 OEIS数列
1 2, 3, 5, 7, 11, 13, 17, 19, ...
2 4, 6, 9, 10, 14, 15, 21, 22, ...
3 8, 12, 18, 20, 27, 28, 30, ...
4 16, 24, 36, 40, 54, 56, 60, ...
5 32, 48, 72, 80, 108, 112, ...
6 64, 96, 144, 160, 216, 224, ...
7 128, 192, 288, 320, 432, 448, ...
8 256, 384, 576, 640, 864, 896, ...
9 512, 768, 1152, 1280, 1728, ...
10 1024, 1536, 2304, 2560, ...
11 2048, 3072, 4608, 5120, ...
12 4096, 6144, 9216, 10240, ...
13 8192, 12288, 18432, 20480, ...
14 16384, 24576, 36864, 40960, ...
15 32768, 49152, 73728, 81920, ...
16 65536, 98304, 147456, ...
17 131072, 196608, 294912, ...
18 262144, 393216, 589824, ...
19 524288, 786432, 1179648, ...
20 1048576, 1572864, 2359296, ...

## 参考资料

1. ^ Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav. Handbook of Number Theory I. Springer. 2006: 316 [2015-04-14]. ISBN 978-1-4020-4215-7. （原始内容存档于2021-03-08） （英语）.
2. ^ Rényi, Alfréd A. On the representation of an even number as the sum of a single prime and single almost-prime number. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 1948, 12 (1): 57–78 [2015-04-14]. （原始内容存档于2021-04-08） （俄语）.