等M圓及等N圓

等M圓等N圓(M-circles and N-circles)英文也稱為是Hall circles,是控制理论中利用開迴路傳遞函數的奈奎斯特圖(或尼柯尔斯图)來求得其閉迴路傳遞函數數值的繪圖工具。此作法最早是由Albert C. Hall在其控制理論的論文中提出[1]

藍色的是開迴路傳遞函數的奈奎斯特圖,上面也放了等M圓及等N圓。M = 0.45的等M圓以紅色表示,和奈奎斯特圖相交於的頻率

建構方式编辑

考慮閉迴路線性控制系統,其開迴路傳遞函數 ,反饋路徑的增益為1。其閉迴路傳遞函數為 

若要確認T(s)的穩定性,可以用開迴路傳遞函數G(s)的奈奎斯特圖配合奈奎斯特稳定判据來確認。不過若只靠奈奎斯特圖,無法知道T(s)的數值。為了要在G(s)平面上得到這些資訊,Hall在G(s)平面加上了使T(s)有固定大小以及有固定相位的二組曲線。

假設一正值M表示固定的大小,令G(s)為z,滿足

 
的點是那些在G(s)平面上和0的距離以及和-1的距離比例為M倍的點。這些符合條件的點z的軌跡為阿波羅尼斯圓英语circles of Apollonius,在控制系統中稱為等M圖。

若假設一正值N表示相位角,滿足

 
的點。滿足此條件的點z的軌跡為圓弧[2],在控制系統中稱為等N圖。

用法编辑

 
傳遞函數1/s(1+s)(1+2s)的尼柯尔斯图,以及調整後的等M圓及等N圓

若要使用此方法,會在開迴路傳遞函數的奈奎斯特圖上重疊不同數值的等M圓及等N圓,根據傳遞函數和等M圓及等N圓的交點即知道閉迴路傳遞函數的大小及相位。

等M圓及等N圓也可以和尼柯尔斯图一起使用,不過等M圓及等N圓會進行坐標轉換,其縱軸會是 ,橫軸是 。尼柯尔斯图的好處是調整開迴路傳遞函數時,只要將曲線往上移即可。

相關條目编辑

參考資料编辑

  1. ^ C., Hall, Albert. The analysis and synthesis of linear servomechanisms. Cambridge: Technology Press, Massachusetts Institute of Technology. 1943. ISBN 9780262080736. OCLC 857968901. 
  2. ^ Munching on Inscribed Angles. cut-the-knot. [2018-05-25].