在数学中,绝对连续是一个光滑性质,比连续一致连续都要严格。函数的绝对连续和测度的绝对连续都有定义。

函数的绝对连续 编辑

定义 编辑

设(X, d)为一个度量空间,并设I实直线R上的区间。函数f : IXI绝对连续,如果对于每一个正数 ,都存在一个正数 ,使得当I两两不交的子区间[xk, yk]的(有限或无限)序列满足

 

时,就有:

 

所有从IX的绝对连续函数的集合记为AC(I; X)。

一个进一步的推广是曲线f : IX的空间ACp(I; X),使得:

 ,对于所有的 

对于Lp空间Lp(I; R)中的某个m

性质 编辑

  • 两个绝对连续函数的和与差也是绝对连续的。
  • 如果两个函数是定义在一个有界的闭区间上,那么它们的乘积也是绝对连续的。
  • 如果一个绝对连续的函数处处不为零,那么它的倒数也是绝对连续的。
  • 如果f : [a,b] → X是绝对连续的,那么它在[a,b]内是有界变差函数。
  • 如果f : [a,b] → R是绝对连续的,那么它便具有卢津N性质。也就是说,对于任何 使得 ,都有 ,其中 表示R上的勒贝格测度
  • 如果f : IR是绝对连续的,那么f几乎处处具有导数,导数是勒贝格可积的,且其积分等于f的增量。
  • f : IR是绝对连续的,当且仅当它是连续和有界变差,且具有卢津N性质。

测度的绝对连续 编辑

如果μν是相同测度空间上的测度,那么我们称μ关于ν绝对连续,如果对于每一个满足ν(A) = 0的集合A都有μ(A) = 0,记为“μ ≪ ν”。用符号来表示,就是:

 

测度的绝对连续是自反传递的,但不是反对称的,因此它是一个预序关系,而不是偏序关系。如果μ ≪ νν ≪ μ,那么测度μν称为等价的。

如果μ带号测度复测度,那么我们称μ关于ν绝对连续,如果它的变差|μ|满足|μ| ≪ ν;等价地,如果每一个满足ν(A) = 0的集合A都是μ-零测集

拉东-尼科迪姆定理说明,如果μ关于ν绝对连续,且νσ-有限测度的,那么μ便具有一个关于ν的密度,或“拉东-尼科迪姆导数”,这意味着存在一个ν-可测函数f,在[0, +∞)内取值,记为f = dμdν,使得对于任何ν-可测集A,都有:

 

在大部分应用中,如果我们只说n欧几里得空间Rn上的测度是绝对连续的,而不具体说明它是关于哪一个测度绝对连续的,那么通常就意味着是关于勒贝格测度绝对连续的。由于Rn关于勒贝格测度是σ-有限的,因此Rn上的绝对连续测度正好是具有密度的测度;特别地,绝对连续的概率测度正好是具有概率密度函数的测度。

两个绝对连续的概念之间的关系 编辑

实直线的波莱尔子集上的测度μ关于勒贝格测度绝对连续,当且仅当点函数

 

是一个局部绝对连续的实函数。也就是说,一个函数是局部绝对连续的,当且仅当它的分布 (数学)|分布导数是一个测度,关于勒贝格测度绝对连续

奇异测度 编辑

通过勒贝格分解定理,每一个测度都可以分解成一个绝对连续测度与一个奇异测度的和。关于非(绝对连续)的测度,参见奇异测度。

例子 编辑

以下的函数是处处连续的,但不是绝对连续的:

 
  • 无界区间内的函数ƒ(x) = x2

参考文献 编辑

  • Ambrosio, L., Gigli, N. & Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. ETH Zürich, Birkhäuser Verlag, Basel. 2005. ISBN 3-7643-2428-7. 
  • Royden, H.L. Real Analysis. Collier Macmillan. 1968. ISBN 0-02-979410-2. 
  • Leoni, Giovanni (2009), ([//web.archive.org/web/20200324174132/http://bookstore.ams.org/gsm-105 页面存档备份,存于互联网档案馆) A First Course in Sobolev Spaces], Graduate Studies in Mathematics, American Mathematical Society, pp. xvi+607 ISBN 978-0-8218-4768-8, MR2527916, Template:Zbl, ([//web.archive.org/web/20200324174131/http://www.maa.org/press/maa-reviews/a-first-course-in-sobolev-spaces 页面存档备份,存于互联网档案馆) MAA]
  • Nielsen, Ole A., An introduction to integration and measure theory, Wiley-Interscience, 1997, ISBN 0-471-59518-7 
  • Royden, H.L., Real Analysis third, Collier Macmillan, 1988, ISBN 0-02-404151-3