應力-能量張量

(重定向自能动张量

應力-能量張量,也稱應力-能量-動量張量能量-應力張量能量-動量張量、簡稱能動張量,在物理學中是一個張量,描述能量動量在時空中的密度通量(flux),其為牛頓物理應力張量的推廣。在廣義相對論中,應力-能量張量為重力場的源,一如牛頓重力理論質量是重力場源一般。應力-能量張量具有重要的應用,尤其是在愛因斯坦場方程式

定義 编辑

請注意我們將全程使用到愛因斯坦取和原則。當用到座標表示,x0代表時間,其他座標項x1, x2及x3則為剩下的空間分量。

應力-能量張量為一個二階張量 ,給出四維動量或4-動量之a分量通過一座標為常數xb之表面的通量。 另外要注意的是應力-能量張量是對稱(當自旋張量為零時),亦即

 

自旋張量S非零,則

 

例子 编辑

此處舉出一些特例:

 

代表能量密度

 

代表能量通過xi表面之通量,等同於

 

i 動量之密度。

分量

 

代表i 動量通過xj表面之通量。其中較特別的是:

 

代表一個類似壓力張應力的物理量——正向應力(normal stress),而

 

代表剪應力(shear stress)。

提醒:在固態物理流體力學中,應力張量所指為應力-能量張量於共動參考系(comoving frame of reference)的空間分量。換句話說,工程學中的應力-能量張量與此處由動量對流項(momentum convective term)表示的應力-能量張量有所差異。

作為諾特流(Noether current) 编辑

應力-能量張量滿足連續性方程式(continuity equation)

 .

此一物理量

 

是對一類空切面積分,得出能量-動量向量。分量 因此可以詮釋為(非重力的)能量與動量之局域密度,而連續性方程式的第一分量

 

則單純是能量守恆的表述。空間分量  (i, j = 1, 2, 3)則對應到局域非重力的應力分量,其中包括了壓力。此一張量為與時空移動相應的守恆諾特流(Noether current)

於廣義相對論中 编辑

上面所給的關係並不唯一決定此張量。在廣義相對論中,對稱形式的張量,也就是額外滿足

 

的關係的張量成為時空曲率的源,並且是與規範变換(gauge transformation)相應的流密度(current density),在此是以座標变換為例。若有扭率(torsion),則此張量就不再是對稱的。這對應到非零自旋張量的例子。參見愛因斯坦-嘉當重力

在廣義相對論中,平直時空所用的偏導數(偏微分,partial derivative)修改為協變導數(covariant derivative)。這表示連續性方程式中用張量表示的能量和動量不是絕對地守恆。在牛頓重力的古典極限,這一點有一個簡單的解釋:與引力位能互相交換的能量,它沒有包含在能動張量中,而動量是通過場傳遞到其他物體。然而在廣義相對論中,無法定義對應「重力場」能量密度與動量密度的物理量;任何意圖要定義這些密度的膺張量(pseudo-tensor)均可以透過一個座標轉換使它們局域地消失為零。一般情況下,對於應力─能量張量只是部分的"協變守恆",我們必須感到心滿意足。

在彎曲時空中,一般而言類空積分依賴於類空截面。事實上在一般的彎曲時空中是無法定義一個全局的能量─動量張量(原文誤為'vector')。


愛因斯坦場方程式 编辑

在廣義相對論中,應力-能量張量主要出現在愛因斯坦場方程式的研究題材中,方程式常寫為:

 

其中 里奇張量,  為里奇純量(對里奇張量做張量縮併(tensor contraction)而得),以及 宇宙重力常數(universal gravitational constant).

特殊情况下的应力-能量张量 编辑

孤立粒子 编辑

在狭义相对论中,质量为m的无相互作用粒子的应力-能量张量为:

 

其中δ是狄拉克δ函数 是速度矢量:

 

处于平衡状态下的流体的应力-能量张量 编辑

对于处于热平衡状态下的流体,应力-能量张量具有一个特别简单的形式:

 

其中 是质量-能量密度(牛顿每立方米), 是流体静压力(牛顿每平方米), 是流体的四维速度 度量张量的逆。

四维速度满足:

 

在随流体一起移动的惯性参考系中,四维速度为:

 

度量张量的倒数为:

 

应力-能量张量是一个对角矩阵:

 

电磁应力-能量张量 编辑

一个无源电磁场的应力-能量张量为:

 

其中 电磁张量

标量场 编辑

满足克莱因-戈尔登方程的标量场 的应力-能量张量为:

 

各式各樣的應力-能量張量 编辑

存在有一些互不相等的應力-能量張量。

正則(Canonical)應力-能量張量 编辑

其為與時空平移相關的諾特流

希爾伯特應力-能量張量 编辑

應力-能量張量在廣義相對論中僅能以動態度規來定義。其定義成一個泛函導數(functional derivative)

 

其中Smatter作用量的非重力部份,為對稱的且有規範不變性

Belinfante-Rosenfeld應力-能量張量 编辑

赝張量(Pseudotensors) 编辑

赝張量的例子有愛因斯坦赝張量藍道-里夫須茲赝張量(Landau-Lifschitz pseudotensor)。

相關條目 编辑

外部連結 编辑