負二項分布(Negative binomial distribution)是統計學上一種描述在一系列独立同分布的伯努利试验中,成功次数到达指定次数(记为r)时失败次数的離散概率分布。比如,如果我们定义掷骰子随机变量x值为x=1时为成功,所有x≠1为失败,这时我们反复掷骰子直到1出现3次(成功次数r=3),此时非1数字出现次数的概率分布即为负二项分布。
负二项分布
概率质量函數
|
参数 |
(實)
(實) |
---|
值域 |
 |
---|
概率质量函数 |
 |
---|
累積分布函數 |
 |
---|
期望值 |
 |
---|
眾數 |

 |
---|
方差 |
 |
---|
偏度 |
 |
---|
峰度 |
 |
---|
矩生成函数 |
 |
---|
特徵函数 |
 |
---|
帕斯卡分布(Pascal distribution,来自Blaise Pascal)和波利亚分布(Polya distribution,又称罐子模型,来自George Pólya)均是负二项分布的特例。在工程,气候等领域中经常用“负二项分布”或“帕斯卡分布”来描述变量r为整数的情况,而使用“波利亚分布”来描述r取到实数值R的情况。
对于“传染性的”("contagious")的离散事件,例如龙卷风爆发,相比泊松分布,波利亚分布由于允许其平均值和方差不同,而能够给出更精确的模型。“传染性”的事件中,如果事件发生率相互独立,其发生率间的正相关性(即发生率间存在正协方差项)会导致变量分布有更大的方差。
“负二项分布”与“二项分布”的区别在于:“二项分布”是固定试验总次数N的独立试验中,成功次数k的分布;而“负二项分布”是所有到r次成功时即终止的独立试验中,失败次数k的分布。
帕斯卡分布编辑
當 是整數時的負二項分布又稱帕斯卡分布,其概率質量函數為:
其中k是失败的次数,r是成功的次数,p是事件成功的概率。在负二项分布的概率质量函数中,由于k+r次伯努利试验为独立同分布,每个成功r次、失败k次的事件的概率为(1 − p)kpr。由于第r次成功一定是最后一次试验,所以应该在k+r-1次试验中选择r-1次成功,使用排列组合二项系数获取所有可能的选择数。
二项系数与负二项名称来源编辑
括号中为二项式系数表达式:
-
该表达式可以写成带负值参数的二项系数的形式,如下式所示,解释了“负二项”名称的来源:
-
概率质量函数对所有可能k值求和为1编辑
帕斯卡分布概率质量函数f(k;r,p)对所有可能k值求和,一定等于1:
证明如下:
其中第三步用到了二项序列展开。
取 ,負二項分布等於幾何分布。其概率質量函數為 。
舉例說,若我們擲骰子,擲到一即視為成功。則每次擲骰的成功率是1/6。要擲出三次一,所需的擲骰次數屬於集合{ 3, 4, 5, 6, ... }。擲到三次一的擲骰次數是負二項分布的隨機變數。要在第三次擲骰時,擲到第三次一,則之前兩次都要擲到一,其機率為 。注意擲骰是伯努利試驗,之前的結果不影響隨後的結果。
若要在第四次擲骰時,擲到第三次一,則之前三次之中要有剛好兩次擲到一,在三次擲骰中擲到2次1的機率為 。第四次擲骰要擲到一,所以要將前面的機率再乘(1/6): 。