# 推遲勢

（重定向自超前勢

## 理論概念

${\displaystyle \Phi (\mathbf {r} )\ {\stackrel {def}{=}}\ {\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {A} (\mathbf {r} )\ {\stackrel {def}{=}}\ {\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}{\frac {\mathbf {J} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

${\displaystyle t_{r}\ {\stackrel {def}{=}}\ t-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}}$

${\displaystyle \Phi (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

## 非齊次的電磁波方程式

${\displaystyle \nabla ^{2}\Phi (\mathbf {r} ,\,t)-{1 \over c^{2}}{\partial ^{2}\Phi (\mathbf {r} ,\,t) \over \partial t^{2}}=-{\rho (\mathbf {r} ,\,t) \over \epsilon _{0}}}$
${\displaystyle \nabla ^{2}\mathbf {A} (\mathbf {r} ,\,t)-{1 \over c^{2}}{\partial ^{2}\mathbf {A} (\mathbf {r} ,\,t) \over \partial t^{2}}=-\mu _{0}\mathbf {J} (\mathbf {r} ,\,t)}$

${\displaystyle {\boldsymbol {\mathfrak {R}}}=\mathbf {r} -\mathbf {r} '}$

${\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\nabla \left({\frac {\rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\right)\,d^{3}\mathbf {r} '={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\left[{\frac {\nabla \rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}+\rho (\mathbf {r} ',\,t_{r})\nabla \left({\frac {1}{\mathfrak {R}}}\right)\right]\,d^{3}\mathbf {r} '}$

{\displaystyle {\begin{aligned}d\rho (\mathbf {r} ',\,t_{r})&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}dt_{r}\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left({\frac {\partial t_{r}}{\partial t}}dt+{\frac {\partial t_{r}}{\partial {\mathfrak {R}}}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left(dt-{\frac {1}{c}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left[dt-{\frac {1}{c}}(\nabla {\mathfrak {R}}\cdot d\mathbf {r} )+\nabla '{\mathfrak {R}}\cdot d\mathbf {r} ')\right]\\\end{aligned}}}

${\displaystyle {\frac {\partial \rho (\mathbf {r} ',\,t)}{\partial t}}={\frac {\partial t_{r}}{\partial t}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}={\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}}$
${\displaystyle \nabla {\mathfrak {R}}={\hat {\boldsymbol {\mathfrak {R}}}}}$

${\displaystyle \nabla \rho (\mathbf {r} ',\,t_{r})=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}\nabla {\mathfrak {R}}=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}{\hat {\boldsymbol {\mathfrak {R}}}}=-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\hat {\boldsymbol {\mathfrak {R}}}}}$

${\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\left[-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\hat {\boldsymbol {\mathfrak {R}}}}{\mathfrak {R}}}-\rho (\mathbf {r} ',\,t_{r})\left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\right)\right]\,d^{3}\mathbf {r} '}$

{\displaystyle {\begin{aligned}\nabla ^{2}\Phi (\mathbf {r} ,\,t)&={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\left[-{\frac {\nabla {\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}\cdot {\frac {\hat {\boldsymbol {\mathfrak {R}}}}{\mathfrak {R}}}-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}\nabla \cdot \left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{\mathfrak {R}}}\right)-[\nabla \rho (\mathbf {r} ',\,t_{r})]\cdot \left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\right)-\rho (\mathbf {r} ',\,t_{r})\nabla \cdot \left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\right)\right]\,d^{3}\mathbf {r} \\&={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\left[-{\frac {{\ddot {\rho }}(\mathbf {r} ',\,t_{r})}{c^{2}{\mathfrak {R}}}}-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c{\mathfrak {R}}^{2}}}+{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c{\mathfrak {R}}^{2}}}-4\pi \rho (\mathbf {r} ',\,t_{r})\delta ^{3}({\boldsymbol {\mathfrak {R}}})\right]\,d^{3}\mathbf {r} '\\&=-{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\left[{\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\,d^{3}\mathbf {r} '\right]-{\frac {\rho (\mathbf {r} ,\,t)}{\epsilon _{0}}}\\\end{aligned}}}

${\displaystyle \nabla ^{2}\Phi (\mathbf {r} ,\,t)+{\frac {1}{c^{2}}}{\frac {\partial ^{2}\Phi (\mathbf {r} ,\,t)}{\partial t^{2}}}=-{\frac {\rho (\mathbf {r} ,\,t)}{\epsilon _{0}}}}$

## 勞侖次規範條件

${\displaystyle \nabla \cdot \mathbf {A} +{1 \over c^{2}}{{\partial \Phi } \over {\partial t}}=0}$

## 廣義的含時電磁場

${\displaystyle \mathbf {E} =-\nabla \Phi -{\frac {\partial \mathbf {A} }{\partial t}}}$
${\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }$

${\displaystyle \mathbf {E} (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}\left[\rho (\mathbf {r} ',\,t_{r}){\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{2}}}-{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c^{2}|\mathbf {r} -\mathbf {r} '|}}\right]d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {B} (\mathbf {r} ,t)={\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}\left[{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c|\mathbf {r} -\mathbf {r} '|^{2}}}\right]\times (\mathbf {r} -\mathbf {r} ')\ d^{3}\mathbf {r} '}$

## 超前勢

${\displaystyle t_{a}\ {\stackrel {def}{=}}\ t+{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}}$

${\displaystyle \Phi _{a}(\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ',\,t_{a})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {A} _{a}(\mathbf {r} ,\,t)={\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{a})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

## 參考文獻

1. Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998: pp. 422–428. ISBN 0-13-805326-X.
2. ^ Alexander Komech; Andrew Komech. Principles of Partial Differential Equations. Springer Science & Business Media. 5 October 2009. ISBN 978-1-4419-1095-0.