实分析中,达布定理(英語:Darboux's theorem)得名于让·加斯东·达布。达布定理说明所有的实导函数(某个实值函数的导数)都具有介值性质:实导函数对任意区间值域仍是区间。即是说,若f为可导函数,则对任意区间I,f′(I) 仍为区间。

当函数 f 是一阶连续可导函数(C1)时,由介值定理,达布定理显然成立。当导函数 f′ 不连续时,达布定理说明 f′ 仍具有介值性质。

历史 编辑

19世纪时,大部分数学家认为介值定理已经可以刻畫出连续函数。但在1875年,让·加斯东·达布证明这个想法是错误的,因为连续函数的导函数仍然具有介值性质,但不一定是连续函数。一个很常用的反例是函数:

  
  

其导数在 处并不连续。

内容 编辑

 为闭区间 上的实值可导函数,那么对介于  之间的任意 ,存在 属于 使得 

证明 编辑

不失一般性,我们可假设 。又设 ,则  。只需找到  上的一个零点即可。

由于  上的连续函数,由極值定理,  上达到极大值。由于 ,极大值不在 处取到。同理,由于 ,极大值也不在b处取到。设 为取到极大值的点,这时, 。于是定理得证。

参见 编辑

参考资料 编辑

  • 万丽 , 李少琪 , 阎庆旭,《微分达布(Darboux)定理的几种新证法及其推广》,《数学的实践与认识》2003年11期
  • 潘继斌,《达布(Darboux)定理及其应用》,《湖北师范学院学报(自然科学版)》2000年01期

外部链接 编辑