近地系外行星

维基媒体列表条目

截至2021年5月7日,人类共在太阳系外发现4723颗系外行星,其中极少数位于太阳系附近[3]美国国家航空航天局系外行星档案记有97颗系外行星离地不到十秒差距(32.6光年)[注 1][4]。与地球相距不足十秒差距的恒星超过四百颗[注 2][9],其中约60颗确知有行星系,51颗恒星肉眼可见[注 3][11],九颗包含行星系

离地25光年的系外行星北落師門b,图片经过假色处理黯淡母星北落师门哈勃空间望远镜2012年摄[1]。2020年科学家认定它不是行星,而是小行星相撞后形成且不断扩张的碎片云[2]
距离最近的系外行星分布,横排数字单位光年

1998年,科学家首度宣布在离地15.3光年的格利澤876周围发现行星,2020年又在32光年外的顯微鏡座AU附近发现行星。比邻星距太阳系仅4.25光年,是离地最近的恒星,2016年科学确认该星附近发现距地最近的系外行星比鄰星b。离地十秒差距范围以21.6光年外的格利泽892系外行星最多,共有六颗。

十秒差距范围发现的大部分系外行星轨道距围绕旋转的恒星很近,大多质量远超地球,只有少数类似,12光年外的鯨魚座YZ有两颗行星可能质量小于地球。众多已经确认的系外行星可能是宜居星球,比邻星b与23.6光年外的格利泽667Cc希望最大。[12]國際天文聯會2015年开展公开调查为已知系外天体起名,其中包括天苑四(10.5光年)与北落师门周围的行星[注 4][15]

近地系外行星编辑

图例
° 水星地球木星(用于对比)
# 确认多行星系
据信属宜居行星 [12]
近地系外行星[4]
恒星 系外行星(按距恒星距离排列) 注释
名称 距离
光年
视星等 质量
M
分配字母
[注 5]
质量
M[注 6]
半径
R
半长轴
天文單位
轨道周期

离心率
倾角
(°)
发现手段 发现年份
太阳° 0 −26.7 1 水星 0.055 0.3829 0.387 88.0 0.205
地球 1 1 1 365.3 0.0167
木星 317.8 10.973 5.2 4333 0.0488
比邻星# 4.2441 11.13 0.123 b >1.2 ~1.1 0.0486 11.2 0.109 ~133 径向速度法 2016 [17][12][18][19][20],一颗候选[21]
c 7 1.489 1928 0.04 133 径向速度法 2020
巴納德星 5.958 9.511 0.144 b >4.2 0.430 232 0.04 径向速度法 2018 [22][23]
沃夫359# 7.895 13.54 0.09 c >3.8 0.018 2.69 0.15 径向速度法 2019 [23]
b >43.9 1.845 2938 0.04 径向速度法 2019
拉蘭德21185 8.307 7.52 0.46 b >2.7 0.0789 12.9 0.12 径向速度法 2017 [23][24]
天苑四 10.489 3.73 0.781 埃吉尔 248 3.48 2692 0.07 89 径向速度法 2000 估计另有行星一颗,岩屑盤一到两个,星周盤一个[25][26][27]
拉卡伊9352# 10.721 7.34 0.489 b >4.2 0.068 9.26 0.03 径向速度法 2019 一颗候选[23][28]
c >7.6 0.120 21.8 0.03 径向速度法 2019
羅斯128 11.007 11.1 0.168 b >1.4 ~1.2 0.0496 9.87 0.12 径向速度法 2017 [29]
格利泽725B# 11.490 9.7 0.248 b >15.7 0.261 91.29 0.06 径向速度法 2019 [23]
c >13.1 0.428 192.4 0.03 径向速度法 2019
格龙布里奇34A# 11.618 8.1 0.38 b >3.03 0.072 11.44 0.094 ~61 径向速度法 2014 [30][31][32]
c >36 5.4 7,600 0.27 ~61 径向速度法 2018
天倉五# 11.753 3.50 0.78 g >1.7 0.133 20 0.06 径向速度法 2017 四颗候选[33][34][12][35][36][37]
h >1.8 0.243 49.4 0.23 径向速度法 2017
e >3.9 ~1.6 0.538 163 0.18 径向速度法 2017
f >3.9 1.33 636 0.16 径向速度法 2017
印第安座εA 11.869 4.83 0.762 b 1032.85 11.55 16509.5 0.26 64.25 径向速度法 2018 [38][39][40]
格利澤1061# 11.98 7.52 0.113 b >1.4 0.021 3.204 <0.31 径向速度法 2019 行星d的轨道有两种可能[41]
c >1.7 0.035 6.689 <0.29 径向速度法 2019
d >1.6 0.052 12.434 <0.54 径向速度法 2019
鯨魚座YZ# 12.108 12.1 0.13 b >0.75 0.0156 1.97 0.0 径向速度法 2017 一颗候选[42][43][23]
c >1.2 0.0209 3.06 0.04 径向速度法 2017
d >1.1 0.0276 4.66 0.03 径向速度法 2017
魯坦星# 12.199 11.94 0.29 c >1.2 0.0365 4.72 0.12 径向速度法 2017 [12][44][23]
b >2.2 ~1.4 0.09 18.6 0.03 径向速度法 2017
d >10.8 0.712 413.9 0.17 径向速度法 2019
e >9.3 0.849 542 0.03 径向速度法 2019
蒂加登星# 12.496 15.4 0.08 b >1.1 0.0252 4.91 0 径向速度法 2019 [45]
c >1.1 0.0443 11.41 0 径向速度法 2019
卡普坦星# 12.829 8.8 0.28 c >6.9 0.311 121 0.07 径向速度法 2014 [46]一颗候选但有争议[47][23]
沃夫1061# 14.046 10.1 0.25 b >1.9 0.0375 4.89 0.03 径向速度法 2015 [12][48][23]
c >3.6 ~1.5 0.089 17.9 0.03 径向速度法 2015
d >6.5 0.421 184 0.02 径向速度法 2015
白羊座TZ# 14.584 12.298 0.14 b >30.9 0.403 241.883 0.18 径向速度法 2019 一颗候选[23][49][注 7]
c >71.6 0.870 767.887 0.33 径向速度法 2019
格利泽674 14.839 9.38 0.35 b >11.2 0.039 4.69 0.23 径向速度法 2007 [51][52][23]
格利泽687# 14.840 9.15 0.41 b >17.2 0.163 38.14 0.17 径向速度法 2014 [53][23][49]
c >16.0 1.165 727.562 0.40 径向速度法 2019
格利澤876# 15.250 10.2 0.33 d 6.8 0.0208 1.9379 0.12 59.5 径向速度法 2005 [54][23]
c 227 0.133 30.228 0.001 59.5 径向速度法 2000
b 720 0.213 61 0.001 59.5 径向速度法 1998
e 15 0.342 124.518 0.18 59.5 径向速度法 2010
葛利斯832# 16.194 8.67 0.45 c >5.4 ~1.7 0.164 35.65 0.06 径向速度法 2014 [12][55][23]
b >206 3.67 3831 0.06 径向速度法 2008
波江座40A 16.386 4.4 0.84 b >8.5 0.224 42.4 0.04 ~72 径向速度法 2018 [56]
葛利斯3323# 17.533 12.2 0.164 b >2.0 ~1.3 0.0328 5.36 0.23 径向速度法 2017 [57]
c >2.3 0.126 40.5 0.17 径向速度法 2017
葛利斯251 18.204 9.65 0.372 b >4.0 0.0818 14.238 0.10 径向速度法 2020 原有两颗候选,后视为单颗行星[58][23][24]
葛利斯205# 18.592 7.97 0.63 b >10.3 0.109 16.9 0.11 径向速度法 2019 [23]
c >13.8 0.689 271 0.04 径向速度法 2019
格利泽229A# 18.777 8.14 0.58 c >7.3 0.339 122 0.19 径向速度法 2020 行星b截至2020年仍待确认[59]
b >8.5 0.898 526.1 0.1 径向速度法 2014
格利澤752A 19.286 9.13 0.46 b >13.6 0.338 106.2 0.03 径向速度法 2018 [60][23]
葛利斯754 19.289 12.23 0.18 b >9.8 0.277 78.37 0.03 径向速度法 2019 [23]
葛利斯588# 19.298 9.311 0.46 b >2.4 0.049 5.81 0.04 径向速度法 2019 [23]
c >10.3 0.53 206 0.06 径向速度法 2019
天园增三# 19.582 4.26 0.85 b >2.7 0.121 18.3 0 径向速度法 2011 两颗候选
[61][62][63]
c >2.4 0.204 40.1 0 径向速度法 2011
d >4.8 0.350 90.3 0 径向速度法 2011
e >4.8 0.509 147 0.29 径向速度法 2017
葛利斯784 20.083 7.97 0.5 b >9.4 0.059 6.6592 0.05 径向速度法 2019 [23]
葛利斯555 20.370 11.317 0.29 b >30.1 0.727 449.6 0.04 径向速度法 2019 [23]
格利泽581# 20.545 10.55 0.31 e >1.7 0.0282 3.15 0.0 ~45 径向速度法 2009 两颗候选但有争议,星周盤一个
[64][65][66][67]
b >16 0.0406 5.37 0.0 ~45 径向速度法 2005
c >5.5 0.072 12.9 0.0 ~45 径向速度法 2007
葛利斯338B 20.658 7 0.64 b >10.3 0.141 24.5 0.11 径向速度法 2020 [68]
GJ 625 21.114 10.2 0.30 b >2.8 0.0784 14.6 ~0.13 径向速度法 2017 [69]
格利泽892# 21.306 5.57 0.78 b 4.74 1.60 0.0388 3.09 ~0 85.05 径向速度法 2015 [70][71][72]
c 4.36 1.51 0.065 6.77 0.062 87.28 径向速度法 2015
d >16 >1.61 0.237 46.9 0.138 ~87 径向速度法 2015
f >7.3 >1.31 0.146 22.7 0.148 ~87 径向速度法 2015
g >11 0.375 94.2 0 ~87 径向速度法 2015
f(e) >108 3.11 2247 0.06 ~87 径向速度法 2015
葛利澤880 22.399 8.64 0.59 b↑ >8.5 0.187 39.372 0.13 径向速度法 2019 [23]
LTT 1445A 22.409 10.529 0.26 b ~2.2 1.35 0.0381 5.35882 0.16 89.47 经过 2019 [73]
葛利斯393 22.938 8.65 0.41 b >1.9 0.055 7.027 0.03 径向速度法 2019 [23]
格利泽667C# 23.632 10.22 0.33 b >5.4 0.049 7.2 0.13 ~52 径向速度法 2009 疑似五颗候选
[74][12][75][76][23]
c >3.9 ~1.5 0.1251 28.2 0.03 ~52 径向速度法 2011
葛利斯514 24.851 9.03 0.53 b >4.3 0.097 15.0 0.05 径向速度法 2019 [23]
葛利斯1151 26.231 14.01 0.15 b >2.5 0.017 2.02 0 磁相互作用 2020 [77][78]
葛利斯486 26.351 11.395 0.32 b 2.82 1.31 0.0173 1.47 <0.05 88.4 经过 2021 [79]
葛利斯300 26.469 12.13 0.26 b↑ >6.8 0.05 8.328 0.29 径向速度法 2019 [23]
葛利斯686 26.612 9.58 0.42 b >7.1 0.097 15.5 0.04 径向速度法 2019 [80][23]
天门增四# 27.741 4.74 0.95 b >5.1 0.0502 4.22 ~0.12 ~77 径向速度法 2009 星周盤一个
[81]
c >18 0.218 38 0.14 ~77 径向速度法 2009
d >23 0.476 123 0.35 ~77 径向速度法 2009
CD Ceti 28.08 14.001 0.161 b >4.0 0.0185 2.2907 0 径向速度法 2020 [82]
牛宿增十# 28.699 6.13 0.78 b >17 0.32 74.7 0.13 径向速度法 2010 [83]
c >24 1.18 526 ~0.32 径向速度法 2011
葛利斯849# 28.711 10.42 0.49 b >270 2.26 1905 0.05 径向速度法 2006 [84][23]
c >300 4.82 5,520 0.087 径向速度法 2006
葛利斯433# 29.572 9.79 0.48 b >6.0 0.062 7.37 0.04 径向速度法 2009 [85][23][59]
d >5.2 0.178 36.1 0.07 径向速度法 2020
c >32 4.82 5094 0.12 径向速度法 2012
葛利斯3325 30.109 11.73 0.27 b >11.8 0.071 12.92 0.03 径向速度法 2019 [23]
HD 102365A 30.374 4.89 0.85 b >16 0.46 122 0.34 径向速度法 2010 [86]
葛利斯357# 30.803 10.9 0.34 b 6.1 1.17 0.035 3.93 0.02 88.92 经过 2019 [87][23]
c >3.6 0.061 9.13 0.04 ~89 径向速度法 2019
d >7.7 0.204 55.7 0.03 ~89 径向速度法 2019
格利泽176# 30.879 10.1 0.45 b >8.0 0.066 8.77 0.08 径向速度法 2007 疑似一颗行星[88][89][23]
c >7.4 0.146 28.6 0.02 径向速度法 2019
葛利斯479 30.912 10.663 0.43 b >5.1 0.074 11.3 0.03 径向速度法 2019 [23]
GJ 3512# 30.949 13.11 0.123 b >147 0.338 204 0.44 径向速度法 2019 [90]
c >54 >1.2 >1390 径向速度法 2019
顯微鏡座AU# 31.719 8.63 0.50 b 17 4.38 0.0645 8.4629991 0.10 89.03 经过 2020 [91][92]
c <28 3.51 0.1101 18.858991 0 88.62 经过 2020
葛利斯436 31.820 10.67 0.41 b 21.36 4.33 0.0280 2.64 0.15 85.8 径向速度法 2004 一颗候选[23]
葛利斯49 32.145 8.9 0.57 b >16.4 0.106 17.3 0.03 径向速度法 2019 [23]

排除项目编辑

太阳系内天体不同,天文学界尚未确立正式认可系外行星的程序。國際天文聯會认为系外行星发现五年后无争议即可确认。[93]经过跟进研究,部分初步报告提出的系外行星是否存在疑有疑问,如2007年发现,离地15.6光年的LHS 288[94]。部分系外行星经后来研究认定不存在,4.36光年外的南門二B[95][96][97]、13.9光年外的范马南星[98]、15.9光年外的格鲁姆布里奇1618[99]、16.2光年外的狮子座AD[100]、16.6光年外的格利泽682[101][102][59]、18.7光年外的VB 10[103]、25.1光年外的北落师门,这些恒星周边都有候选行星后来否决的情况[2]

2021年,科学家在織女一附近发现候选行星但尚待确认[104]南門二A周围也发现候选行星,但也可能是小行星或特定发现机制下因人为因素成像[105]

根据国际天文联会太阳系外行星工作组2003年的定义,行星的标准是质量不足以维持热核聚变。研究计算结果表明如此规则的质量上限是约13倍木星質量,质量超过的天体通常归入棕矮星[106]部分候选系外行星经研究认定质量超过阈值,很可能是棕矮星,如12.6光年外的SCR 1845-6357 B[107]、29.7光年外的SDSS J1416+1348 B[108]、30光年外的WISE 1217+1626 B[109]

部分次棕矮星星際行星质量不足以持续核聚变,但因未绕恒星旋转不属系外行星,如离地7.3光年的WISE 0855–0714[110]、13光年外的UGPS 0722-05[111]、18.6光年外的WISE 1541-2250[112]、20光年外的SIMP J01365663+0933473[113]

统计编辑

行星系编辑

按行星数排列
系外行星数 行星系数 名称
6 1 格利泽892
5 0
4 4 天倉五魯坦星格利澤876天园增三
3 7 格利澤1061鯨魚座YZ沃夫1061格利泽581天门增四葛利斯433葛利斯357
2 19
1 29
合计 60
近地系外行星分布
距离
(光年)
恒星系数  恒星数 有行星的恒星数 有行星的恒星数占比
< 5 1 3 1 33%
5–10 8 11 3 27%
10–15 31 43 16 37%
15–20 57 77 13 17%
20–25 55 78 11 14%
25–32.6 ~200 19 ~9%
合计 >413[9] 63 <15.0%
肉眼可见行星系[注 3]
恒星可见 数量
9
51

系外行星编辑

按估计质量下限排列
分类 质量范围[114] 数目
类地行星 0.5至5倍 M 47
超级地球 5至10倍 M 24
类海王星行星 10至50倍 M 28
类木星行星 50至600倍 M 10
超级木星 超600倍 M 3
合计 111
按轨道半径排列
轨道半径 数目 注释
不足0.4AU 83 水星轨道0.39倍AU
0.4到1倍AU 16 地球轨道一倍AU
1到5倍AU 11
超5倍AU 2 木星轨道5.2倍AU
按轨道周期排列
轨道周期 数目 注释
不到90天 76 水星轨道周期88天
90至365天 17
一到十年 14 木星11.9年
超十年 5
按轨道离心率排列
轨道离心率 数目 注释
小于0.02 17 地球轨道离心率0.0167
0.02至0.2 78
水星0.205
超0.2 15
各年发现数目
年份 数目
1998 1
2000 2
2004 1
2005 2
2006 2
2007 3
2008 1
2009 6
2010 3
2011 5
2012 1
2014 5
2015 9
2016 1
2017 15
2018 5
2019 38
2020 9
2021 1

参见编辑

注释编辑

  1. ^ 本条目数据基本取自美国国家航空航天局系外行星档案[4],其他数据库也列出部分已经确认但尚未纳入航空航天局档案的近地系外行星[5][6][7]
  2. ^ 例如2016年11月确知第104近的恒星系是天园增三,离地19.7光年[8]
  3. ^ 3.0 3.1 波特尔暗空分类法认为,亮度至少达到6.5视星等的天体在典型乡村夜空肉眼可见;如果条件“极佳”,肉眼可见的最黯淡天体为7.6甚至8.0视星等[10]
  4. ^ 恒星天苑四以北欧海洋女神,其行星天苑四b以瀾的丈夫埃吉爾命名[13],行星北落師門b以古叙利亚鱼神大袞命名[14][15]
  5. ^ 系外行星命名约定用“b”开始的小写英语字母为行星命名,根据按时间排列的初步报告顺序分配字母,如果报告包含多颗行星则按距离恒星从近到远排列。没有字母说明行星尚待确认,或该项已经撤回。
  6. ^ 已知大部分系外行星质量误差范围很大(通常在一到三成)。科学家通常靠测算恒星徑向速度变化推断系外行星质量,但这种方法只能估算行星轨道参数,算不出軌道傾角。因此,大部分系外行星只能提供質量下限估计值,同时从统计角度估计真实质量接近质量下限,但系外行星还是有一成三的可能实际质量超出质量下限两倍。[16]
  7. ^ 冯氏等人2020年在《天文物理期刊》发表的文章把白羊座TZ称为GJ9066,米科·托米(Mikko Tuomi)等人2019年发表的文献称为GJ83.1[50]。行星b和c是冯氏等人2020年文献的编号,托米等人2019年的著作分别编为b和d。托米等人文献编为c的行星未列入冯式等人2020年文章,故列入候选。

参考资料编辑

  1. ^ Harrington, J. D.; Villard, Ray. NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut. NASA. 2013-08-01 [2021-05-07]. (原始内容存档于2021-02-26). 
  2. ^ 2.0 2.1 Gáspár, András; Rieke, George H. New HST data and modeling reveal a massive planetesimal collision around Fomalhaut. PNAS. 2020-04-20, 117 (18): 9712–9722. Bibcode:2020PNAS..117.9712G. PMC 7211925. PMID 32312810. arXiv:2004.08736. doi:10.1073/pnas.1912506117. 
  3. ^ Schneider, Jean. Interactive Extra-solar Planets Catalog. The Extrasolar Planets Encyclopaedia. Exoplanet.eu. [2021-05-07]. 
  4. ^ 4.0 4.1 4.2 NASA Exoplanet Archive—Confirmed Planets. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2021-03-22). 
  5. ^ Catalog. The Extrasolar Planets Encyclopaedia. [2021-05-07]. (原始内容存档于2021-05-07). 
  6. ^ Exoplanets Data Explorer. Exoplanet Orbit Database. California Planet Survey. [2021-05-07]. (原始内容存档于2021-04-20). 
  7. ^ Open Exoplanet Catalogue. [2021-05-07]. (原始内容存档于2020-11-11). 
  8. ^ Johnston, Robert. List of Nearby Stars: To 21 light years. Johnstonsarchive.net. 2014-11-02 [2021-05-07]. (原始内容存档于2021-02-11). 
  9. ^ 9.0 9.1 Stars within 10 parsecs. Solstation.com. 2014-04-25 [2021-05-07]. (原始内容存档于2021-04-22). 
  10. ^ Bortle, John E. Light Pollution And Astronomy: The Bortle Dark-Sky Scale. Sky & Telescope. 2001 [2021-05-07]. (原始内容存档于2021-05-06). 
  11. ^ Powell, Richard. Stars within 50 light years. An Atlas of the Universe. 2006 [2021-05-07]. (原始内容存档于2021-03-17). 
  12. ^ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 The Habitable Exoplanets Catalog. Planetary Habitability Laboratory. University of Puerto Rico in Arecibo. 2015-09-01 [2021-05-07]. (原始内容存档于2021-04-28). 
  13. ^ epsilon Eridani. NameExoWorlds. International Astronomical Union. [2018-05-14]. (原始内容存档于2018-06-12). 
  14. ^ Fomalhaut (alpha Piscis Austrini). Nameexoworlds. International Astronomical Union. [2018-05-14]. (原始内容存档于2018-06-12). 
  15. ^ 15.0 15.1 Final Results of NameExoWorlds Public Vote Released (新闻稿). International Astronomical Union. 2015-12-15 [2021-05-07]. (原始内容存档于2021-04-25). 
  16. ^ Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; 等. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets. Publications of the Astronomical Society of the Pacific. 2008, 120 (867): 531–554. Bibcode:2008PASP..120..531C. arXiv:0803.3357. doi:10.1086/588487. 
  17. ^ Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V.; Jenkins, James S.; Jones, Hugh R. A.; Kiraga, Marcin; Kürster, Martin; López-González, Marίa J.; Marvin, Christopher J.; Morales, Nicolás; Morin, Julien; Nelson, Richard P.; Ortiz, José L.; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodrίguez-López, Cristina; Sarmiento, Luis F.; Strachan, John P.; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias. A terrestrial planet candidate in a temperate orbit around Proxima Centauri (PDF). Nature. 2016-08-25, 536 (7617): 437–440 [2021-05-07]. Bibcode:2016Natur.536..437A. PMID 27558064. arXiv:1609.03449. doi:10.1038/nature19106. (原始内容存档 (PDF)于2021-04-22). 
  18. ^ Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; 等. A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU. Science Advances. 2020-01-15, 6 (3). eaax7467. Bibcode:2020SciA....6.7467D. PMC 6962037. PMID 31998838. doi:10.1126/sciadv.aax7467. 
  19. ^ Kervella, Pierre; Arenou, Frédéric; Schneider, Jean. Orbital inclination and mass of the exoplanet candidate Proxima c. Astronomy & Astrophysics. 2020, 635: L14. Bibcode:2020A&A...635L..14K. ISSN 0004-6361. arXiv:2003.13106. doi:10.1051/0004-6361/202037551. 
  20. ^ Benedict, G. Fritz; McArthur, Barbara E. A Moving Target—Revising the Mass of Proxima Centauri c. Research Notes of the AAS. 2020-06-16, 4 (6): 86. Bibcode:2020RNAAS...4...86B. doi:10.3847/2515-5172/ab9ca9. 
  21. ^ Suárez Mascareño, A.; Faria, J. P.; 等. Revisiting Proxima with ESPRESSO. Astronomy & Astrophysics. 2020, 639: A77. Bibcode:2020A&A...639A..77S. ISSN 0004-6361. arXiv:2005.12114. doi:10.1051/0004-6361/202037745. 
  22. ^ Ribas, I.; Tuomi, M.; Reiners, A.; Butler, R. P.; Morales, J. C.; Perger, M.; Dreizler, S.; Rodríguez-López, C.; González Hernández, J. I.; Rosich, A.; Feng, F.; Trifonov, T.; Vogt, S. S.; Caballero, J. A.; Hatzes, A.; Herrero, E.; Jeffers, S. V.; Lafarga, M.; Murgas, F.; Nelson, R. P.; Rodríguez, E.; Strachan, J. B. P.; Tal-Or, L.; Teske, J.; Toledo-Padrón, B.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Azzaro, M.; Béjar, V. J. S.; Barnes, J. R.; Berdiñas, Z. M.; Burt, J.; Coleman, G.; Cortés-Contreras, M.; Crane, J.; Engle, S. G.; Guinan, E. F.; Haswell, C. A.; Henning, Th.; Holden, B.; Jenkins, J.; Jones, H. R. A.; Kaminski, A.; Kiraga, M.; Kürster, M.; Lee, M. H.; López-González, M. J.; Montes, D.; Morin, J.; Ofir, A.; Pallé, E.; Rebolo, R.; Reffert, S.; Schweitzer, A.; Seifert, W.; Shectman, S. A.; Staab, D.; Street, R. A.; Suárez Mascareño, A.; Tsapras, Y.; Wang, S. X.; Anglada-Escudé, G. A candidate super-Earth planet orbiting near the snow line of Barnard's star (PDF). Nature. 2018, 563 (7731): 365–368 [2021-05-07]. Bibcode:2018Natur.563..365R. ISSN 0028-0836. OCLC 716177853. PMID 30429552. arXiv:1811.05955. doi:10.1038/s41586-018-0677-y. hdl:2299/21132. (原始内容存档 (PDF)于2021-02-14). 
  23. ^ 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 23.12 23.13 23.14 23.15 23.16 23.17 23.18 23.19 23.20 23.21 23.22 23.23 23.24 23.25 23.26 23.27 23.28 23.29 23.30 23.31 23.32 23.33 23.34 Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. Frequency of planets orbiting M dwarfs in the Solar neighbourhood. 2019-06-11. arXiv:1906.04644 [astro-ph.EP]. 
  24. ^ 24.0 24.1 Stock, S.; 等. The CARMENES search for exoplanets around M dwarfs. Three temperate-to-warm super-Earths. Astronomy & Astrophysics. 2020-11, 643: A112. Bibcode:2020A&A...643A.112S. arXiv:2010.00474. doi:10.1051/0004-6361/202038820. 
  25. ^ eps Eri. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2018-12-09). 
  26. ^ eps Eridani c. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-07]. (原始内容存档于2021-01-21). 
  27. ^ Mawet, Dimitri; 等. Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet. The Astronomical Journal. 2019, 157 (1): 33. Bibcode:2019AJ....157...33M. arXiv:1810.03794. doi:10.3847/1538-3881/aaef8a. 
  28. ^ Jeffers, S. V.; Dreizler, S.; 等. A multiplanet system of super-Earths orbiting the brightest red dwarf star GJ 887. Science. 2020-06, 368 (6498): 1477–1481. Bibcode:2020Sci...368.1477J. ISSN 0036-8075. PMID 32587019. arXiv:2006.16372. doi:10.1126/science.aaz0795. 
  29. ^ Ross 128. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2020-01-02). 
  30. ^ Howard, Andrew W.; 等. The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth. The Astrophysical Journal. 2014-10, 794 (1): 9. Bibcode:2014ApJ...794...51H. arXiv:1408.5645. doi:10.1088/0004-637X/794/1/51. 51. 
  31. ^ Trifonov, T; Kürster, M; Zechmeister, M; 等. The CARMENES search for exoplanets around M dwarfs. Astronomy & Astrophysics. 2018, 609 (117): A117. Bibcode:2018A&A...609A.117T. arXiv:1710.01595. doi:10.1051/0004-6361/201731442. 
  32. ^ Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; 等. The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction. Astronomy and Astrophysics. 2018, 617: A104. Bibcode:2018A&A...617A.104P. arXiv:1804.03476. doi:10.1051/0004-6361/201732535. 
  33. ^ tau Cet. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2018-03-20). 
  34. ^ tau Ceti. Open Exoplanet Catalogue. [2021-05-07]. (原始内容存档于2018-11-23). 
  35. ^ tau Cet b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-07]. (原始内容存档于2021-01-24). 
  36. ^ tau Cet c. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-07]. (原始内容存档于2021-01-24). 
  37. ^ tau Cet d. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-07]. (原始内容存档于2021-01-24). 
  38. ^ Endl, M.; Kürster, M.; Els, S.; Hatzes, A. P.; Cochran, W. D.; Dennerl, K.; Döbereiner, S. The planet search program at the ESO Coudé Echelle spectrometer. III. The complete Long Camera survey results. Astronomy and Astrophysics. 2002, 392 (2): 671–690. Bibcode:2002A&A...392..671E. arXiv:astro-ph/0207512. doi:10.1051/0004-6361:20020937. 
  39. ^ Feng, Fabo; Tuomi, Mikko; Jones, Hugh R. A. Detection of the closest Jovian exoplanet in the Epsilon Indi triple system. 2018-03-23. arXiv:1803.08163 [astro-ph.EP]. 
  40. ^ Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus. Detection of the nearest Jupiter analog in radial velocity and astrometry data. Monthly Notices of the Royal Astronomical Society. 2019-10-14, 490 (4): 5002–5016. Bibcode:2019MNRAS.490.5002F. arXiv:1910.06804. doi:10.1093/mnras/stz2912. 
  41. ^ Anglada-Escudé, G.; Reiners, A.; Pallé, E.; Ribas, I.; Berdiñas, Z. M.; Rodríguez López, C.; Morales, N.; López-González, M. J.; Hambsch, F-J; Strachan, J B P.; Hidalgo Soto, D.; Lalitha, S.; Coleman, G A L.; Haswell, C. A.; Barnes, J. R.; Zechmeister, M.; Rodríguez, E.; Jeffers, S. V.; Dreizler, S.; Anglada-Escudé, G. RedDots: A temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061. Monthly Notices of the Royal Astronomical Society. 2020, 493 (1): 536–550. Bibcode:2020MNRAS.493..536D. arXiv:1908.04717. doi:10.1093/mnras/staa248. 
  42. ^ YZ Cet. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2020-01-03). 
  43. ^ YZ Cet e. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2017-08-15 [2021-05-07]. (原始内容存档于2020-01-02). 
  44. ^ GJ 273. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2020-01-03). 
  45. ^ Caballero, J. A.; Reiners, A.; Ribas, I.; Dreizler, S.; Zechmeister, M.; 等. The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star (PDF). Astronomy & Astrophysics. 2019-06-12, 627: A49 [2021-05-07]. Bibcode:2019A&A...627A..49Z. ISSN 0004-6361. arXiv:1906.07196. doi:10.1051/0004-6361/201935460. (原始内容存档 (PDF)于2021-01-12). 
  46. ^ Kapteyn. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. 
  47. ^ Kapteyn's b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2015-05-13 [2021-05-07]. (原始内容存档于2021-01-22). 
  48. ^ Wolf 1061. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-07]. (原始内容存档于2018-03-20). 
  49. ^ 49.0 49.1 Feng, Fabo; 等. Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs. The Astrophysical Journal Supplement Series. 2020-10, 250 (2): 29. Bibcode:2020ApJS..250...29F. arXiv:2008.07998. doi:10.3847/1538-4365/abb139. 
  50. ^ GJ 83.1. SIMBAD. [2021-05-07]. (原始内容存档于2021-05-07). 
  51. ^ GJ 674. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. (原始内容存档于2018-03-19). 
  52. ^ GJ 674 b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2007-04-25 [2021-05-08]. (原始内容存档于2021-04-17). 
  53. ^ GJ 687. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  54. ^ GJ 876. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  55. ^ GJ 832. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  56. ^ Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik; Williamson, Michael; Stassun, Keivan; Kimock, Benjamin; Varosi, Frank; Schofield, Sidney; Liu, Jian; Powell, Scott; Cassette, Anthony; Jakeman, Hali; Avner, Louis; Grieves, Nolan; Barnes, Rory; Zhao, Bo; Gilda, Sankalp; Grantham, Jim; Stafford, Greg; Savage, David; Bland, Steve; Ealey, Brent. The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey. Monthly Notices of the Royal Astronomical Society. 2018-10, 480 (2): 2411–2422. Bibcode:2018MNRAS.480.2411M. arXiv:1807.07098. doi:10.1093/mnras/sty1933. 
  57. ^ GJ 3323. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  58. ^ Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Burt, Jennifer A.; Rivera, Eugenio J.; Tuomi, Mikko; Teske, Johanna; Arriagada, Pamela; Diaz, Matias; Holden, Brad; Keiser, Sandy. The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey. The Astronomical Journal. 2017-04-12, 153 (5): 208. Bibcode:2017AJ....153..208B. ISSN 1538-3881. arXiv:1702.03571. doi:10.3847/1538-3881/aa66ca. 
  59. ^ 59.0 59.1 59.2 Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong; Teske, Johanna K.; Burt, Jenn; Díaz, Matías R.; Thompson, Ian B. Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs. The Astrophysical Journal Supplement Series. 2020-01-08, 246 (1): 11. Bibcode:2020ApJS..246...11F. arXiv:2001.02577. doi:10.3847/1538-4365/ab5e7c. 
  60. ^ Kaminski, A.; Trifonov, T.; Caballero, J. A.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Amado, P. J.; Zechmeister, M.; Dreizler, S.; Perger, M.; Tal-Or, L.; Bonfils, X.; Mayor, M.; Astudillo-Defru, N.; Bauer, F. F.; Béjar, V. J. S.; Cifuentes, C.; Colomé, J.; Cortés-Contreras, M.; Delfosse, X.; Díez-Alonso, E.; Forveille, T.; Guenther, E. W.; Hatzes, A. P.; Henning, Th; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Luque, R.; Mandel, H.; Montes, D.; Morales, J. C.; Passegger, V. M.; Pedraz, S.; Reffert, S.; Sadegi, S.; Schweitzer, A.; Seifert, W.; Stahl, O.; Udry, S. The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617. Astronomy & Astrophysics. 2018-08-03, 618: A115. Bibcode:2018A&A...618A.115K. arXiv:1808.01183. doi:10.1051/0004-6361/201833354. 
  61. ^ HD 20794. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  62. ^ HD 20794 f. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2018-03-20). 
  63. ^ HD 20794 g. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2020-01-02). 
  64. ^ GJ 581. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. (原始内容存档于2021-05-11). 
  65. ^ GJ 581 d. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2021-01-21). 
  66. ^ GJ 581 f. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2019-12-26). 
  67. ^ GJ 581 g. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2019-12-26). 
  68. ^ González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.; Perger, M.; Schmitt, J. H. M. M. The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B). Astronomy & Astrophysics. 2020-03-29, A93: 637. Bibcode:2020A&A...637A..93G. arXiv:2003.13052. doi:10.1051/0004-6361/201937050. 
  69. ^ GJ 625. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  70. ^ Vogt, Steven S.; 等. Six Planets Orbiting HD 219134. The Astrophysical Journal. 2015-11, 814 (1): 12. Bibcode:2015ApJ...814...12V. arXiv:1509.07912. doi:10.1088/0004-637X/814/1/12. 
  71. ^ Johnson, Marshall C.; 等. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134. The Astrophysical Journal. 2016-04, 821 (2): 74. Bibcode:2016ApJ...821...74J. arXiv:1602.05200. doi:10.3847/0004-637X/821/2/74. 
  72. ^ Gillon, Michaël; 等. Two massive rocky planets transiting a K-dwarf 6.5 parsecs away. Nature Astronomy. 2017, 1. 0056. Bibcode:2017NatAs...1E..56G. arXiv:1703.01430. doi:10.1038/s41550-017-0056. 
  73. ^ Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; D'iaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A.; Figueira, Pedro; Forveille, Thierry; Fur'esz, G'abor; Henze, Christopher E.; Jao, Wei-Chun; L'epine, S'ebastien; Levine, Alan M.; Lovis, Christophe; Mink, Jessica; Muirhead, Philip S.; Murgas, Felipe; Pepe, Francesco; Tenenbaum, Peter; Teske, Johanna K.; Twicken, Dr Joseph D.; Udry, St'ephane; Jenkins, Jon M.; Winn, Joshua N.; Seager, Sara; Latham, David W.; Vanderspek, Roland; Ricker, George R.; Bonfils, Xavier; Winston, Elaine; Diamond-Lowe, Hannah; Henry, Todd J.; Vrijmoet, Eliot; Eastman, Jason D.; Horch, Elliott P.; Astudillo-Defru, Nicola; Charbonneau, David; Irwin, Jonathan M.; Medina, Amber A.; Winters, Jennifer G. Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs. 2019-06-24. arXiv:1906.10147. doi:10.3847/1538-3881/ab364d. 
  74. ^ GJ 667 C. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  75. ^ GJ 667 C d. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2017-12-01). 
  76. ^ GJ 667 C h. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2016-02-23 [2021-05-08]. (原始内容存档于2017-12-01). 
  77. ^ Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P.; Hardcastle, M. J.; Haverkorn, M.; Mechev, A.; O’Sullivan, S. P.; Röttgering, H. J. A.; White, G. J. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nature Astronomy. 2020-06, 4 (6): 577–583. Bibcode:2020NatAs...4..577V. arXiv:2002.08727. doi:10.1038/s41550-020-1011-9. 
  78. ^ Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D.; Kanodia, Shubham; Ramsey, Lawrence W.; Wolszczan, Alexander; Endl, Michael; Bender, Chad F.; Diddams, Scott A.; Fredrick, Connor; Hearty, Fred; Monson, Andrew; Metcalf, Andrew J.; Roy, Arpita; Schwab, Christian. The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star. 2021-02-03. arXiv:2102.02233 [astro-ph.EP]. 
  79. ^ Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, A.; Bean, J. L.; Luque, R.; Parviainen, H.; Pallé, E.; Stock, S.; Zechmeister, M.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Barclay, T.; Béjar, V. J. S.; Bluhm, P.; Casasayas-Barris, N.; Cifuentes, C.; Collins, K. A.; Collins, K. I.; Cortés-Contreras, M.; de Leon, J.; Dreizler, S.; Dressing, C. D.; Esparza-Borges, E.; Espinoza, N.; Fausnaugh, M.; Fukui, A.; Hatzes, A. P.; Hellier, C.; Henning, Th.; Henze, C. E.; Herrero, E.; Jeffers, S. V.; Jenkins, J. M.; Jensen, E. L. N.; Kaminski, A.; Kasper, D.; Kossakowski, D.; Kürster, M.; Lafarga, M.; Latham, D. W.; Mann, A. W.; Molaverdikhani, K.; Montes, D.; Montet, B. T.; Murgas, F.; Narita, N.; Oshagh, M.; Passegger, V. M.; Pollacco, D.; Quinn, S. N.; Quirrenbach, A.; Ricker, G. R.; Rodríguez López, C.; Sanz-Forcada, J.; Schwarz, R. P.; Schweitzer, A.; Seager, S.; Shporer, A.; Stangret, M.; Stürmer, J.; Tan, T. G.; Tenenbaum, P.; Twicken, J. D.; Vanderspek, R.; Winn, J. N. A nearby transiting rocky exoplanet that is suitable for atmospheric investigation. Science. 2021-03-05, 371 (6533): 1038–1041. arXiv:2103.04950. doi:10.1126/science.abd7645. 
  80. ^ Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E.; Rubio, A. Garrido; Hernandez, J. I. Gonzalez; Gratton, R.; Leto, G.; Maggio, A.; Perger, M.; Sozzetti, A.; Mascareno, A. Suarez; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Desidera, S.; Molinari, E.; Pedani, M.; Pinamonti, M.; Rebolo, R.; Ribas, I.; Toledo-Padron, B. HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686. Astronomy & Astrophysics. 2019-01-16, A193: 622. arXiv:1901.05338. doi:10.1051/0004-6361/201834868. 
  81. ^ 61 Vir. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  82. ^ Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D.; Quirrenbach, A.; Jarque, S. Becerril; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, A.; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E. The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b. Astronomy and Astrophysics. 2020-06-02, 640: A50. Bibcode:2020A&A...640A..50B. arXiv:2006.01684. doi:10.1051/0004-6361/202038031. 
  83. ^ HD 192310. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  84. ^ GJ 849. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  85. ^ GJ 433. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. (原始内容存档于2020-11-25). 
  86. ^ HD 102365. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. 
  87. ^ Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P.; Ricker, G. R.; Ribas, I.; Pedraz, S.; Nagel, E.; Murgas, F.; Morales, J. C.; Montañés-Rodríguez, P.; McDermott, S.; Latham, D. W.; Lafarga, M.; Kotani, T.; Klahr, H.; Kaminski, A.; Jenkins, J. M.; Feng, F.; Dynes, S.; Dressing, C. D.; Crane, J. D.; Collins, K. I.; Collins, K. A.; Chen, G.; Caldwell, D. A.; Butler, R. P.; Burt, J.; Burke, C. J.; Bluhm, P.; Bauer, F. F.; Batalha, N. E.; Anderson, D. R.; Amado, P. J.; Zechmeister, M.; Osorio, M. R. Zapatero; Trifonov, T.; Stock, S.; Schlecker, M.; Rodríguez-López, C.; Reiners, A.; Reffert, S.; Quirrenbach, A.; Parviainen, H.; Oshagh, M.; Ofir, A.; Nowak, G.; Narita, N.; Montes, D.; Molaverdikhani, K.; Kürster, M.; Kaltenegger, L.; Jeffers, S. V.; Henning, T.; Hellier, C.; Hatzes, A.; Díez-Alonso, E.; Cortés-Contreras, M.; Caballero, J. A.; Béjar, V. J. S.; Anglada-Escudé, G.; Espinoza, N.; Kemmer, J.; Dreizler, S.; Kossakowski, D.; Pallé, E.; Luque, R. A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation. Astronomy & Astrophysics. 2019-04-29, A39: 628. Bibcode:2019A&A...628A..39L. arXiv:1904.12818. doi:10.1051/0004-6361/201935801. 
  88. ^ HD 285968. NASA Exoplanet Science Institute. California Institute of Technology. [2021-05-08]. (原始内容存档于2021-05-11). 
  89. ^ GJ 176 c. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2010-12-17 [2021-05-08]. (原始内容存档于2014-02-23). 
  90. ^ Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López-González, M. J.; Rodríguez-López, C.; Béjar, V. J. S.; González-Cuesta, L.; Luque, R.; Pallé, E.; Perger, M.; Baroch, D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escudé, G.; Caballero, J. A.; Cortés-Contreras, M.; Dreizler, S.; Lafarga, M.; Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; 等. A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Science. 2019-09-27, 365 (6460): 1441–1445. Bibcode:2019Sci...365.1441M. ISSN 0036-8075. PMID 31604272. arXiv:1909.12174. doi:10.1126/science.aax3198. 
  91. ^ Plavchan, Peter; Barclay, Thomas; Gagné, Jonathan; 等. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature. 2020, 582 (7813): 497–500. Bibcode:2020Natur.582..497P. PMC 7323865. PMID 32581383. arXiv:2006.13248. doi:10.1038/s41586-020-2400-z. 
  92. ^ Martioli, E.; 等. New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance. 2020-12-24. arXiv:2012.13238 [astro-ph.EP]. 
  93. ^ Lee, Rhodi. Want To Name An Exoplanet? Here's Your Chance. Tech Times. 2015-09-18 [2021-05-18]. (原始内容存档于2018-06-30). 
  94. ^ Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C. A Search for Astrometric Companions to Stars in the Southern Hemisphere. Publications of the Astronomical Society of the Pacific. 2009, 121 (878): 365. Bibcode:2009PASP..121..365B. doi:10.1086/599044. 
  95. ^ alf Cen B b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2011-05-27 [2021-05-08]. (原始内容存档于2021-05-04). 
  96. ^ LePage, Andrew. Has Another Planet Been Found Orbiting Alpha Centauri B?. Drew Ex Machina. 2015-03-28 [2021-05-08]. (原始内容存档于2021-05-06). 
  97. ^ Rajpaul, Vinesh. Ghost in the time series: no planet for Alpha Cen B. Monthly Notices of the Royal Astronomical Society: Letters. 2015-10-19, 456 (1): L6–L10. Bibcode:2016MNRAS.456L...6R. arXiv:1510.05598. doi:10.1093/mnrasl/slv164. 
  98. ^ Farihi, J.; Becklin, E. E.; Macintosh, B. A. Mid-Infrared Observations of van Maanen 2: No Substellar Companion. Astrophysical Journal Letters. 2004-06, 608 (2): L109–L112. Bibcode:2004ApJ...608L.109F. arXiv:astro-ph/0405245. doi:10.1086/422502. 
  99. ^ Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh; 等. Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations. The Astrophysical Journal. 2010-05, 714 (2): 1551–1569. Bibcode:2010ApJ...714.1551H. arXiv:1003.5340. doi:10.1088/0004-637X/714/2/1551. 
  100. ^ Carleo, I.; 等. The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b. Astronomy & Astrophysics. 2020-06, 638: A5. Bibcode:2020A&A...638A...5C. arXiv:2002.10562. doi:10.1051/0004-6361/201937369. 
  101. ^ GJ 682 b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2021-01-14). 
  102. ^ GJ 682 c. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2021-01-13). 
  103. ^ VB 10 b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2021-04-24). 
  104. ^ Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George. A decade of radial-velocity monitoring of Vega and new limits on the presence of planets. 2021-01-21. arXiv:2101.08801 [astro-ph.EP]. 
  105. ^ Wagner, K.; Boehle, A.; Pathak, P.; Kasper, M.; Arsenault, R.; Jakob, G.; Käufl, U.; Leveratto, S.; Maire, A.-L.; Pantin, E.; Siebenmorgen, R. Imaging low-mass planets within the habitable zone of α Centauri. Nature Communications. 2021-02-10, 12 (1): 922 [2021-05-08]. ISSN 2041-1723. doi:10.1038/s41467-021-21176-6. (原始内容存档于2021-04-23). 
  106. ^ Boss, Alan P.; Butler, R. Paul; Hubbard, William B.; 等. Working Group on Extrasolar Planets. Proceedings of the International Astronomical Union. 2007, 1 (T26A): 183. Bibcode:2007IAUTA..26..183B. doi:10.1017/S1743921306004509. 
  107. ^ SCR 1845 b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2012-04-13 [2021-05-08]. (原始内容存档于2020-01-02). 
  108. ^ SDSS 141624 b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2010-01-18 [2014-05-20]. (原始内容存档于2015-10-01). 
  109. ^ WISE 1217+16A b. The Extrasolar Planet Encyclopaedia. Exoplanet.eu. [2021-05-08]. (原始内容存档于2020-01-30). 
  110. ^ Clavin, Whitney; Harrington, J. D. NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun. NASA. 2014-04-25 [2015-09-17]. (原始内容存档于2021-04-17). 
  111. ^ Lucas, P. W.; Tinney, C. G.; Burningham, B.; 等. The discovery of a very cool, very nearby brown dwarf in the Galactic plane. Monthly Notices of the Royal Astronomical Society. 2010, 408 (1): L56–L60. Bibcode:2010MNRAS.408L..56L. arXiv:1004.0317. doi:10.1111/j.1745-3933.2010.00927.x. 
  112. ^ Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; 等. The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE). The Astrophysical Journal. 2011, 743 (1): 50. Bibcode:2011ApJ...743...50C. arXiv:1108.4678. doi:10.1088/0004-637X/743/1/50. 
  113. ^ Astronomers discover a nearby free-range planet with incredible magne. [2021-05-08]. (原始内容存档于2021-01-25). 
  114. ^ HEC: Periodic Table of Exoplanets. Planetary Habitability Laboratory. University of Puerto Rico at Arecibo. 2014-04-17 [2021-05-08]. (原始内容存档于2021-02-17). 

扩展阅读编辑

外部链接编辑