# 雙心多邊形

## 雙心三角形

${\displaystyle {\frac {1}{R-x}}+{\frac {1}{R+x}}={\frac {1}{r}}}$

## 雙心四邊形

${\displaystyle {\frac {1}{(R-x)^{2}}}+{\frac {1}{(R+x)^{2}}}={\frac {1}{r^{2}}}}$

## 邊數超過4的雙心多邊形

${\displaystyle n=5:\quad r(R-x)=(R+x){\sqrt {(R-r+x)(R-r-x)}}+(R+x){\sqrt {2R(R-r-x)}},}$
${\displaystyle n=6:\quad 3(R^{2}-x^{2})^{4}=4r^{2}(R^{2}+x^{2})(R^{2}-x^{2})^{2}+16r^{4}x^{2}R^{2},}$
${\displaystyle n=8:\quad 16p^{4}q^{4}(p^{2}-1)(q^{2}-1)=(p^{2}+q^{2}-p^{2}q^{2})^{4},}$

## 參考文獻

1. ^ Gorini, Catherine A., The Facts on File Geometry Handbook, Infobase Publishing: 17, 2009, ISBN 9780816073894.
2. Reiman, István, International Mathematical Olympiad: 1976-1990, Anthem Press: 170–171, 2005, ISBN 9781843312000.
3. ^ Dörrie, Heinrich. 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover. 1965: 188–193. ISBN 978-0-486-61348-2.
4. ^ Yiu, Paul, Euclidean Geometry, [1][永久失效連結], 1998, pp. 158-164.
5. ^ Salazar, Juan Carlos, Fuss's Theorem, Mathematical Gazette, 2006,, 90 (July): 306–307.
6. ^ Davison, Charles, Subjects for mathematical essays, Macmillan and co., limited: 98, 1915.
7. ^ Dörrie, Heinrich, 100 Great Problems of Elementary Mathematics: Their History and Solution, Courier Dover Publications: 192, 1965, ISBN 9780486613482.
8. ^ Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html