# 雙曲三角形

## 標準化高斯曲率

${\displaystyle R={\frac {1}{\sqrt {-K}}}}$

${\displaystyle (\pi -A-B-C)R^{2}{}{}\!}$

## 參考文獻

1. ^ Weisstein, Eric W. (编). Triangle Inequality. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. （英语）.
2. ^ Mohamed A. Khamsi; William A. Kirk. §1.4 The triangle inequality in Rn. An introduction to metric spaces and fixed point theory. Wiley-IEEE. 2001 [2021-08-24]. ISBN 0-471-41825-0. （原始内容存档于2021-10-28）.
3. ^ A. G. Kovalev (Lecturer). Part IB - Geometry, 4.3 Two models for the hyperbolic plane [IB部 - 幾何學，4.3 雙曲平面的兩種模型]. Dexter Chua. [2021-08-26]. （原始内容存档于2021-08-26） （英语）.
4. ^ Mathwords: Degenerate. www.mathwords.com. [2019-11-29]. （原始内容存档于2022-03-16）.
5. ^ Schwartz, Richard Evan. Ideal triangle groups, dented tori, and numerical analysis. Annals of Mathematics. Ser. 2. 2001, 153 (3): 533–598. JSTOR 2661362. MR 1836282. . doi:10.2307/2661362.
6. ^ Stothers, Wilson, Hyperbolic geometry, University of Glasgow, 2000 [2021-08-24], （原始内容存档于2012-09-06）, interactive instructional website
7. ^ The circumcircle of a hyperbolic triangle. maths.gla.ac.uk. [2021-08-24]. （原始内容存档于2018-02-11）.
8. ^ Hyperbolic Geometry Theorem's We Know (PDF). math.uaa.alaska.edu. [2021-08-24]. （原始内容存档 (PDF)于2021-08-29）.
9. ^ Marvin J. Greenberg (1974) Euclidean and Non-Euclidean Geometries, pp. 211–3, W.H. Freeman & Company.
10. ^ Gowers, T. and Barrow-Green, J. and Leader, I. The Princeton Companion to Mathematics. Princeton University Press. 2010. ISBN 9781400830398. LCCN 2008020450.
11. ^ Thurston, Dylan. 274 Curves on Surfaces, Lecture 5 (PDF). Fall 2012 [23 July 2013]. （原始内容存档 (PDF)于2022-01-09）.
12. ^ Sommerville, D.M.Y. The elements of non-Euclidean geometry Unabr. and unaltered republ. Mineola, N.Y.: Dover Publications. 2005: 58. ISBN 0-486-44222-5.
13. ^ Needham, Tristan. Visual Complex Analysis. Oxford University Press. 1998: 270 [2021-08-24]. ISBN 9780198534464. （原始内容存档于2021-08-24）.
14. ^ Ratcliffe, John. Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics 149. Springer. 2006: 99 [2021-08-24]. ISBN 9780387331973. （原始内容存档于2021-04-29）. That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786.
15. ^ Paul Minter (based on Mihalis Dafermos's lectures). Differential Geometry (Part II) [微分幾何（第二部）] (PDF). 2016 [2021-08-26]. （原始内容存档 (PDF)于2021-08-29） （英语）.

## 延伸閱讀

• Svetlana Katok (1992) Fuchsian Groups, University of Chicago Press ISBN 0-226-42583-5