打开主菜单
各种各样的
基本

NumberSetinC.svg

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元數
八元數
十六元數
超實數
大實數
上超實數

雙曲複數
雙複數
複四元數
共四元數英语Dual quaternion
超复数
超數
超現實數

其他

質數
可計算數
基數
阿列夫數
同餘
整數數列
公稱值

規矩數
可定義數
序数
超限数
p進數
數學常數

圓周率
自然對數的底
虛數單位
無窮大

雙曲複數乘法表
× 1 j
1 1 j
j j 1

雙曲複數英语:hyperbolic numbersSplit-complex number),是異於複數而對實數所做的推廣。

目录

定義编辑

考慮數 ,其中 實數,而量 不是實數,但 是實數。

選取 ,得到一般複數。取 的話,便得到雙曲複數。

定義雙曲複數的加法乘法如下,使之符合交換律結合律分配律

 
 

共軛、範數编辑

對於 ,其共軛值 。對於任何雙曲複數 

 
 
 

可見它是自同構的。

定義內積  。若  ,說 (雙曲)正交。

雙曲複數的平方範數就取自己和自己的內積,即自身和其共軛值之乘積(閔可夫斯基範數):

 

這個範數非正定,其Metric signature是(1,1)。它在乘法下不變: 

除法编辑

除了0之外,也不是每個雙曲複數都有乘法逆元。

 

由此可見,雙曲複數可逆若且唯若其平方範數非零。其形式均為 ,其中 是實數。

编辑

雙曲複數的冪等元有:

列方程 。有四個解: 

s和s^*都是不可逆的。它們可以作雙曲複數的 

若將 表示成 ,雙曲複數的乘法可表示成  。因此,在這個基裏,雙曲複數的加法和乘法和直和R⊕R同構。

共軛可表示為 ,範數 

幾何编辑

有閔可夫斯基內積的二維實向量空間稱為1+1閔可夫斯基空間,表示為R1,1。正如歐几里得平面R2的幾何學可以複數表示,閔可夫斯基空間的幾何學可以雙曲複數表示。

R,對於非零的 ,點集  雙曲線。左邊和右邊的會經過   稱為單位雙曲線。

共軛雙曲線是  ,會分別經過ja和-ja。雙曲線和共軛雙曲線會被成直角的兩條漸近線   分開。

歐拉公式的相應版本是 

歷史编辑

1848年James Cockle提出了Tessarines。1882年威廉·金頓·克利福德以雙曲複數表示自旋和。

20世紀,雙曲複數成為描述狹義相對論勞侖茲變換的工具,因為不同參考系之間的速度變換可由雙曲旋轉表達。