打开主菜单

电势能

處於電場的電荷分佈所具有的勢能
(重定向自電勢能
在這篇文章內,向量标量分別用粗體斜體顯示。例如,位置向量通常用 表示;而其大小則用 來表示。

靜電學裏,電勢能Electric potential energy)是處於電場電荷分佈所具有的勢能,與電荷分佈在系統內部的組態有關。電勢能的單位是焦耳。電勢能與電勢不同。電勢定義為處於電場的電荷所具有的電勢能每單位電荷。電勢的單位是伏特

電勢能的數值不具有絕對意義,只具有相對意義。所以,必須先設定一個電勢能為零的參考系統。當物理系統內的每一個點電荷都互相分開很遠(分開距離為無窮遠),都相對靜止不動時,這物理系統通常可以設定為電勢能等於零的參考系統。[1]:§25-1假設一個物理系統裏的每一個點電荷,從無窮遠緩慢地被遷移到其所在位置,總共所做的機械功 ,則這物理系統的電勢能

在這過程裏,所涉及的機械功 ,不論是正值或負值,都是由這物理系統之外的機制賦予,並且,緩慢地被遷移的每一個點電荷,都不會獲得任何動能。

如此計算電勢能,並沒有考慮到移動的路徑,這是因為電場是保守場,電勢能只跟初始位置與終止位置有關,與路徑無關。

計算電勢能编辑

在一個物理系統內,計算一個點電荷所具有的電勢能的方法,就是計算將這點電荷Q從無窮遠位置遷移到其它固定位置電荷附近所需要做的機械功。而這計算只需要兩項資料:

  1. 其它電荷所產生的電勢。
  2. 這點電荷Q的電荷量。

注意到這計算不需要知道其它電荷的電荷量,也不需要知道這點電荷Q所產生的電勢。

儲存於點電荷系統內的電勢能编辑

單點電荷系統编辑

只擁有單獨一個點電荷的物理系統,其電勢能為零,因為沒有任何其它可以產生電場的源電荷,所以,將點電荷從無窮遠移動至其最終位置,外機制不需要對它做任何機械功。特別注意,這點電荷有可能會與自己生成的電場發生作用。然而,由於在點電荷的位置,它自己生成的電場為無窮大,所以,在計算系統的有限總電勢能之時,一般刻意不將這「自身能」納入考量範圍之內,以簡化物理模型,方便計算。

雙點電荷系統编辑

 
一個質子受到的另一個質子的電場力和電勢能隨   變化的示意圖。

思考兩個點電荷所組成的物理系統。假設第一個點電荷   的位置為坐標系的原點   ,則根據庫侖定律,點電荷   施加於位置為   的第二個點電荷  電場力

 

其中, 電常數

在遷移點電荷   時,為了要抗拒電場力,外機制必需施加作用力   於點電荷   。所以,機械功  

 

由於庫侖力為保守力,機械功與積分路徑   無關,所以,可以選擇任意一條積分路徑。在這裡,最簡單的路徑為從無窮遠位置朝著   方向遷移至   位置的直線路徑。那麼,機械功為

 

這機械功是無窮遠位置與   位置之間的靜電能差別:

 

設定   ,則

 

現在,假設兩個點電荷的位置分別為    ,則電勢能為

 

其中,  是兩個點電荷之間的距離。

假設兩個點電荷的正負性相異,則電勢能為負值,兩個點電荷會互相吸引;否則,電勢能為正值,兩個點電荷會互相排斥。

三個以上點電荷的系統编辑

對於三個點電荷的系統,外機制將其每一個單獨點電荷,一個接著一個,從無窮遠位置遷移至最終位置,所需要做的機械功,就是整個系統的靜勢能。以方程式表示,

 

其中,  為點電荷,  為第i個與第j個點電荷之間的距離。

按照這方法演算,對於多個點電荷的系統,按照順序,從第一個點電荷到最後一個點電荷,各自緩慢遷移到最後對應位置。在第   個點電荷   遷移時,只會感受到從第   個點電荷到第   個點電荷的電場力,而機械功   是因為抗拒這些電場力而做出的貢獻:

 

所有點電荷做出的總機械功(即總電勢能)為[2]

 

將每一個項目重覆多計算一次,然後將總合除以   ,這公式也可以表達為,

 

這樣,可以忽略點電荷的遷移順序。

注意到除了點電荷   以外,所有其它點電荷產生的電勢在位置  

 

所以,離散點電荷系統的總電勢能為

 
  • 上述方程式假設電介質是自由空間,其電容率  ,即電常數。假設電介質不是自由空間,而是電容率為   的某種電介質,則必需將方程式內的   更換為  

儲存於連續電荷分佈的能量编辑

對於連續電荷分佈,前面的電勢能方程式變為[2]

 

其中,  是在源位置  電荷密度  是積分體積。

應用高斯定律

  ;

其中,  是電場。

電勢能為

 

應用散度定理,可以得到

 

其中,  是包住積分體積   的閉曲面。

當積分體積   趨向於無限大時,閉曲面   的面積趨向於以變率   遞增,而電場、電勢分別趨向於以變率    遞減,所以,上述方程式右手邊第一個面積分項目趨向於零,電勢能變為

 

電場與電勢的微分關係為

 

將這方程式代入,電勢能變為

 

所以,電勢能密度  

 

自身能與交互作用能编辑

前面分別推導出兩個電勢能方程式:

 
 

注意到第一個方程式計算得到的電勢能,可以是正值,也可以是負值;但從第一個方程式推導出來的第二個方程式,其計算得到的電勢能則必定是正值。為甚麼會發生這不一致問題?原因是第一個方程式只囊括了電荷與電荷之間的交互作用能;而第二個方程式在推導過程中,無可避免地將電荷的自身能也包括在內。在推導第一個方程式時,在位置   的電勢乃是,除了   以外,所有其它電荷共同貢獻出的電勢;而在推導第二個方程式時,電勢乃是所有電荷共同貢獻出的電勢。

舉一個雙點電荷案例,假設電荷    的位置分別為    ,則在任意位置   的電場為[2]

 

其電勢能密度為

 

很明顯地,這方程式右手邊的前兩個項目分別為電荷    的自身能密度    。最後一個項目是否為交互作用能密度?為了回答這有意思的問題,繼續計算交互作用能密度的體積積分:

 

應用一條向量恆等式

 

可以得到

 

應用散度定理,可以將這方程式右手邊第一個項目,從體積積分變為面積積分:

 

其中,  是包住積分體積   的閉曲面。

假設   趨向於無窮大空間,則這面積積分趨向於零。再應用一則關於狄拉克δ函數向量恆等式

 

可以得到

 

這正是雙點電荷系統的電勢能。

參考文獻编辑

  1. ^ Halliday, David; Resnick, Robert; Walker, Jearl. Electric Potential. Fundamentals of Physics 5th. John Wiley & Sons. 1997. ISBN 0-471-10559-7. 
  2. ^ 2.0 2.1 2.2 Jackson, John David, Classical Electrodynamic 3rd., USA: John Wiley & Sons, Inc.: pp. 40–43, 1999, ISBN 978-0-471-30932-1