打开主菜单
正態分佈下,和平均值偏離一個標準差以內的數據會佔68.27%,偏離二個標準差以內的數據會到95.45%,偏離三個標準差以內的數據會到99.73%。
x軸為標準分數,y軸是比標準分數接近平均值之內的比例。y軸是對數長度

統計上,68–95–99.7原則(68–95–99.7 rule)是在正態分佈中,距平均值小於一個標準差、二個標準差、三個標準差以內的百分比,更精確的數字是68.27%、95.45%及99.73%。若用數學用語表示,其算式如下,其中X為常態分布隨機變數的觀測值,μ為分佈的平均值,而σ為標準差:

在實驗科學中有對應正態分佈的三西格馬定律(three-sigma rule of thumb),是一個簡單的推論,內容是「幾乎所有」的值都在平均值正負三個標準差的範圍內,也就是在實驗上可以將99.7%的機率視為「幾乎一定」[1]。不過上述推論是否有效,會視探討領域中「顯著」的定義而定,在不同領域,「顯著」(significant)的定義也隨著不同,例如在社會科學中,若置信区间是在正負二個標準差(95%)的範圍,即可視為顯著。但是在粒子物理中,若是發現英语Discovery (observation)新的粒子,置信区间要到正負五個標準差(99.99994%)的程度。

在不是正態分佈的情形下,也有另一個對應的三西格馬定律(three-sigma rule),即使是在非正態分佈的情形下,至少會有88.8%的機率會在正負三個標準差的範圍內,這是依照切比雪夫不等式的結果。若是單模分佈(unimodal distributions)下,正負三個標準差內的機率至少有95%,若一些符合特定條件的分佈,機率至少會到98%[2]

數值表编辑

Because of the exponential tails of the normal distribution, odds of higher deviations decrease very quickly. From the rules for normally distributed data for a daily event:

範圍 預期的样本比例在範圍內 近似預期頻率超出範圍 近似頻率(以每日活动近似)
μ ± 0.5σ 0.382924922548026 2 in 3 每星期四至五次
μ ± σ 0.682689492137086 1 in 3 每星期兩次
μ ± 1.5σ 0.866385597462284 1 in 7 每星期
μ ± 2σ 0.954499736103642 1 in 22 每三個星期
μ ± 2.5σ 0.987580669348448 1 in 81 每四分之一年
μ ± 3σ 0.997300203936740 1 in 370 每年
μ ± 3.5σ 0.999534741841929 1 in 2149 每六年
μ ± 4σ 0.999936657516334 1 in 15787 每43 年(twice in a lifetime)
μ ± 4.5σ 0.999993204653751 1 in 147160 每403 年 (once in the modern era)
μ ± 5σ 0.999999426696856 1 in 1744278 4776年 (once in recorded history)
μ ± 5.5σ 0.999999962020875 1 in 26330254 72090年 (thrice in history of modern humankind)
μ ± 6σ 0.999999998026825 1 in 506797346 每138萬年 (twice in history of humankind)
μ ± 6.5σ 0.999999999919680 1 in 12450197393 每3400萬年 (twice since the extinction of dinosaurs)
μ ± 7σ 0.999999999997440 1 in 390682215445 每10.7億年 (four times in history of Earth)
μ ± xσ   1 in    

参考文献编辑

  1. ^ 「三西格馬定律」的用法大約是在公元2000年代時出現,有刊載在Schaum's Outline of Business Statistics. McGraw Hill Professional. 2003: 359 Grafarend, Erik W. Linear and Nonlinear Models: Fixed Effects, Random Effects, and Mixed Models. Walter de Gruyter. 2006: 553. 
  2. ^ See:

参见编辑