# 菲涅耳積分

## 定義

${\displaystyle S(x)=\int _{0}^{x}\sin(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+3}}{(2n+1)!(4n+3)}},}$
${\displaystyle C(x)=\int _{0}^{x}\cos(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+1}}{(2n)!(4n+1)}}.}$

## 羊角螺線

### 估計值

CS的值當變數趨近於無窮大時，可用複變分析的方法求得。用以下這個函數的路徑積分

${\displaystyle e^{-z^{2}}}$

R趨近於無窮大時，路徑積分沿弧形的部分將趨近於零[1]，而實數軸部分的積分將可由高斯積分

${\displaystyle \int _{y-axis}^{}e^{-z^{2}}dz=\int _{0}^{\infty }e^{-t^{2}}dt={\frac {\sqrt {\pi }}{2}},}$

${\displaystyle \int _{slope}^{}\exp(-z^{2})dz=\int _{0}^{\infty }\exp(-t^{2}e^{i\pi /2})e^{i\pi /4}dt=e^{i\pi /4}(\int _{0}^{\infty }\cos(-z^{2})dz+i\int _{0}^{\infty }\sin(-z^{2})dz)}$
${\displaystyle \int _{0}^{\infty }\cos t^{2}\,\mathrm {d} t=\int _{0}^{\infty }\sin t^{2}\,\mathrm {d} t={\frac {\sqrt {2\pi }}{4}}={\sqrt {\frac {\pi }{8}}}.}$

## 相關公式

• ${\displaystyle \int _{0}^{\infty }e^{-at}\sin(t^{2})\mathrm {d} t={\frac {1}{4}}*{\sqrt {2\pi }}*(\cos {\frac {a^{2}}{4}}*(1-2*{\rm {FresnelC}}((1/2)*a*{\sqrt {2}}/{\sqrt {\pi }}))+\sin {\frac {a^{2}}{4}}*(1-2*\mathrm {FresnelS} ((1/2)*a*{\sqrt {2}}/{\sqrt {\pi }})))}$
• ${\displaystyle \int \sin(ax^{2}+2bx+c)\mathrm {d} x={\frac {{\sqrt {2\pi }}*(\cos((b^{2}-a*c)/a)*{\rm {FresnelS}}({\sqrt {2}}(ax+b)/({\sqrt {\pi a}}))-\sin((b^{2}-a*c)/a)*{\rm {FresnelC}}({\sqrt {2}}(ax+b)/({\sqrt {\pi a}})))}{2{\sqrt {a}}}}}$
• ${\displaystyle \int \mathrm {FresnelC} (t)\mathrm {d} t=\mathrm {FresnelC} (t)*t-{\frac {\sin {\frac {\pi t^{2}}{2}}}{\pi }}}$
• ${\displaystyle \int \mathrm {FresnelS} (t)\mathrm {d} t=\mathrm {FresnelS} (t)*t+{\frac {\cos {\frac {\pi t^{2}}{2}}}{\pi }}}$
• ${\displaystyle {\frac {\mathrm {d} ~\mathrm {FresnelC} (t)}{\mathrm {d} t}}=\cos {\frac {\pi t^{2}}{2}}}$
• ${\displaystyle {\frac {\mathrm {d} ~\mathrm {FresnelS} (t)}{\mathrm {d} t}}=\sin {\frac {\pi t^{2}}{2}}}$

## 參考資料

1. ^ Beatty, Thomas. How to evaluate Fresnel Integrals (PDF). FGCU MATH - SUMMER 2013. [27 July 2013]. （原始內容存檔 (PDF)於2015-02-07）.
2. ^ Abromowitz and Stegun, Handbook of Mathematical Functions,p303-305, 1972 Natinal Bureau of Standards