量子力學裏,WKB近似是一種半經典計算方法,可以用來解析薛丁格方程式喬治·伽莫夫使用這方法,首先正確地解釋了阿爾法衰變。WKB近似先將量子系統的波函數,重新打造為一個指數函數。然後,半經典展開。再假設波幅相位的變化很慢。通過一番運算,就會得到波函數的近似解。

簡略歷史 编辑

WKB近似以三位物理學家格雷戈尔·文策尔汉斯·克喇末萊昂·布里淵姓氏字首命名。於1926年,他們成功地將這方法發展和應用於量子力學。不過早在1923年,數學家哈罗德·杰弗里斯就已經發展出二階線性微分方程式的一般的近似法。薛丁格方程式也是一個二階微分方程式。可是,薛丁格方程式的出現稍微晚了兩年。三位物理學家各自獨立地在做WKB近似的研究時,似乎並不知道這個更早的研究。所以物理界提到這近似方法時,常常會忽略了杰弗里斯所做的貢獻。這方法在荷蘭稱為KWB近似,在法國稱為BWK近似,只有在英國稱為JWKB近似[1]

數學概念 编辑

一般而言,WKB近似專門計算一種特殊微分方程式的近似解。這種特殊微分方程式的最高階導數項目的係數是一個微小參數 。給予一個微分方程式,形式為

 

假設解答的形式可以展開為一個漸近級數

 

將這擬設代入微分方程式。然後约去相同指數函數因子。又取 的極限。這樣,就可以從 開始,一個一個的解析這漸近級數的每一個項目 

通常 的漸近級數會發散。當 大於某值後,一般項目 會開始增加。因此WKB近似法造成的最小誤差,約是最後包括項目的數量級。

數學例子 编辑

設想一個二階齊次線性微分方程式

 

其中, 

猜想解答的形式為

 

將猜想代入微分方程式,可以得到

 

 的極限,最重要的項目是

 

我們可以察覺, 必須與 成比例。設定 ,則 的零次冪項目給出

 

我們立刻認出這是程函方程。解答為

 

檢查 的一次冪項目給出

 

這是一個一維傳輸方程式。解答為

 

其中, 是任意常數。

我們現在有一對近似解(因為 可以是正值或負值)。一般的一階WKB近似解是這一對近似解的線性組合:

 

檢查 的更高冪項目( )可以給出:

 

薛丁格方程式的近似解 编辑

解析一個量子系統的薛丁格方程式,WKB近似涉及以下步驟:

  1. 波函數重寫為一個指數函數
  2. 將這指數函數代入薛丁格方程式
  3. 展開指數函數的參數為約化普朗克常數冪級數
  4. 匹配約化普朗克常數同次冪的項目,會得到一組方程式,
  5. 解析這些方程式,就會得到波函數的近似。

一維不含時薛丁格方程式

 

其中, 約化普朗克常數 是質量, 是坐標, 位勢 是能量, 是波函數。

稍加編排,重寫為

 (1)

假設波函數的形式為另外一個函數 的指數(函數 作用量有很密切的關係):

 

代入方程式(1),

 (2)

其中, 表示 隨著 的導數。

 可以分為實值部分與虛值部分。設定兩個函數  

 

注意到波函數的波幅是 ,相位是 。將 的代表式代入方程式(2),分別匹配實值部分、虛值部分,可以得到兩個方程式:

 (3)
 (4)

半經典近似 编辑

  展開為 冪級數

 
 

將兩個冪級數代入方程式(3)與(4)。 的零次冪項目給出:

 
 

假若波幅變化地足夠慢於相位( ),那麼,我們可以設定

 
 

只有當 的時候,這方程式才成立。經典運動只會允許這種狀況發生。

更精確一點, 的一次冪項目給出:

 
 

所以,

 
 

波函數的波幅是  

定義動量 ,則波函數的近似為

 (5)

其中,  是常數, 是一個任意參考點的坐標。

換到另一方面,假若相位變化地足夠慢於波幅( ),那麼,我們可以設定

 
 

只有當 的時候,這方程式才成立。經典運動不會允許這種狀況發生。只有在量子系統裏,才會發生這種狀況,稱為量子穿隧效應。類似地計算,可以求得波函數的近似為

 (6)

其中, 

連接公式 编辑

顯而易見地,我們可以從分母觀察出來,在經典轉向點 ,這兩個近似方程式(5)和(6)會發散,無法表示出物理事實。我們必須正確地找到波函數在經典轉向點的近似解答。設定 是經典運動允許區域。在這區域內, ,波函數呈振動形式。其它區域  是經典運動不允許區域,波函數呈指數遞減形式。假設在經典轉向點附近,位勢足夠的光滑,可以近似為線性函數。更詳細地說,在點 附近,將  展開為一個冪級數:

 

其中, 是常數值係數。

取至一階,方程式(1)變為

 

這微分方程式稱為艾里方程式,其解為著名的艾里函數

 

匹配艾里函數和在 的波函數,在 的波函數,經過一番繁雜的計算,可以得到在 附近的連接公式connection formula[1]

 

類似地,也可以得到在 附近的連接公式:

 

量子化規則 编辑

在經典運動允許區域 內的兩個連接公式也必須匹配。設定角變量

 
 
 

那麼,

 
 

立刻,我們可以認定 。匹配相位,假若 ,那麼,

 

所以,

 

假若 ,那麼,

 

所以,

 

總結,量子系統必須滿足量子化守則:

 

範例 编辑

考慮一個量子諧振子系統,一個質量為 的粒子,運動於諧振位勢 ;其中, 是角頻率。求算其本徵能級 

能量為 的粒子,其運動的古典轉向點 

 

所以,

 

粒子的動量為

 

將這些變量代入量子化守則:

 

經過一番運算,可以得到本徵能量

 

藉由以上之計算,發現近似解與精確解完全一樣。

參閱 编辑

參考文獻 编辑

現代文獻 编辑

  1. ^ 1.0 1.1 Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004. ISBN 0-13-111892-7. 
  • Liboff, Richard L. Introductory Quantum Mechanics (4th ed.). Addison-Wesley. 2003. ISBN 0-8053-8714-5. 
  • Sakurai, J. J. Modern Quantum Mechanics. Addison-Wesley. 1993. ISBN 0-201-53929-2. 
  • Bender, Carl; Orszag, Steven. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill. 1978. ISBN 0-07-004452-X. 

歷史文獻 编辑