齒狀回(英文:Dentate gyrus,縮寫:DG)是大腦顳葉海馬結構的一部分,其中還包括海馬體和下托。齒狀回是海馬體三突觸迴路的一部分。它被認為有助於形成新的情節記憶[1][2]自發探索新環境[2]和其他功能。[3]

齒狀回
海馬體區域圖。 DG代表齒狀回。
腦橋正前方的大腦冠狀切面。 (「齒狀回」的標籤在底部中央。)
基本資訊
屬於顳葉
動脈大腦後動脈
前脈絡叢動脈
標識字符
拉丁文gyrus dentatus
MeSHD018891
NeuroNames英語NeuroNames179
NeuroLex英語NeuroLex IDbirnlex_1178
TA98A14.1.09.237、​A14.1.09.339
TA25521
FMAFMA:61922
格雷氏p.827
神經解剖學術語英語Anatomical terms of neuroanatomy

值得注意的是,它是已知在許多哺乳動物(從齧齒目靈長目動物)中具有顯着的成體神經發生率的少數幾個大腦結構之一。[4]成體神經發生可能發生的其他部位包括腦室下區紋狀體小腦[5]然而,成人齒狀回中是否存在顯着的神經發生一直是一個有爭議的問題。[6][7]2019年的證據表明,成體神經發生確實發生在腦室下區和齒狀回的顆粒層下區[8][9]

結構 編輯

 
齒狀回的位置以及與其他結構的關係。

齒狀回與海馬體一樣,由三個不同的原皮層組成:外層是分子層、中間層是顆粒細胞層、內層是多態層。[10]組成海馬體的原皮層:外層是分子層,中間層是錐體層、內層是定向層。多態層也是齒狀回的(CA4,海馬體和齒狀回的交界處)。[11][12]

顆粒層位於上面的分子層和下面的多態層()之間。[13]顆粒層的顆粒細胞投射出稱為苔蘚狀纖維軸突,在CA3錐體神經元的樹突上形成興奮性突觸。顆粒細胞以層壓的方式緊密堆積在一起,抑制了神經元的興奮。[14]

顆粒細胞的一些基底樹突向上彎曲進入分子層。而大多數基底樹突則進入。這些樹突更短更細,側枝也更少。[15]

中的第二種興奮性細胞類型是苔蘚細胞。[11]它沿隔顳軸廣泛投射其軸突(從隔區到顳葉),同側投射跳過細胞體附近的前1-2毫米[16]。通過隨機化它們的細胞分布來準備CA3中的一組細胞組合以用於數據檢索的作用。[17]

和顆粒細胞層之間是一個稱為顆粒層下區的區域,是成體神經發生的部位。[13]

齒狀回前內側的延續稱為齒狀回尾部,或Band of Giacomini。大部分齒狀回沒有暴露在腦表面,但齒狀回尾部卻暴露在表面,是鈎回下表面的重要標誌。[18]

三突觸迴路 編輯

三突觸迴路由內嗅皮II層的興奮性細胞(主要是星狀細胞)組成,通過穿緣通路投射到齒狀回的顆粒細胞層。[19][20]齒狀回不接收來自其他皮層結構的直接輸入。[21]穿緣通路分為內側穿緣通路和外側穿緣通路,分別產生於內嗅皮質的內側和外側。內側穿緣通路突觸到顆粒細胞的近端樹突區域,而外側穿緣通路突觸到顆粒細胞的遠端樹突。齒狀回的大多數側面視圖似乎表明一個結構僅由一個實體組成,但內側運動可能提供齒狀回腹側和背側部分的證據。[22]稱為苔蘚狀纖維的顆粒細胞的軸突與CA3和CA1的錐體細胞建立興奮性突觸連接。[20]

發育 編輯

齒狀回中的顆粒細胞的特點是它們在大腦發育過程中形成的時間較晚。在老鼠中,大約85%的顆粒細胞是在出生後產生的。[23]據推測,在人類中,顆粒細胞在妊娠第10.5至11周開始生成,並在妊娠中期、晚期、出生後直至成年的期間繼續生成。[24][25]科學家研究了在老鼠大腦發育過程中顆粒細胞的生發來源及其遷移途徑。[26]最老的顆粒細胞在海馬神經上皮的特定區域產生,並在胚胎期(E)17/18左右遷移到原始齒狀回,然後作為形成顆粒層中最外層的細胞沉澱。接着,齒狀前體細胞移出海馬神經上皮的同一區域,並保留其有絲分裂能力,侵入正在形成的齒狀回的門(核心)。從這時起,這種分散的生發基質就是顆粒細胞的來源。新生成的顆粒細胞聚集在已經開始沉澱在顆粒層中的舊細胞之下。隨着更多顆粒細胞的產生,層慢慢變厚,細胞根據年齡堆積,越老的越淺,越年輕的越深。[27]顆粒細胞前體保留在顆粒下區域,隨着齒狀回的生長逐漸變薄,但這些前體細胞保留在成年老鼠體內。這些稀疏分散的細胞不斷產生顆粒細胞神經元,[28][29]增加了神經元總數。老鼠、猴子和人類的齒狀回還有許多其他差異。老鼠的顆粒細胞只有頂端樹突,但在猴子和人類中,許多顆粒細胞有基底樹突。[30]

作用 編輯

 
顆粒層下區(在老鼠腦中)。(A)齒狀回區域:門、顆粒層下區(sgz)、顆粒細胞層(GCL)和分子層(ML)。細胞被雙皮質素 (DCX)染色。(B) 顆粒層下區的閉口,位於門和GCL之間[31],是成體神經發生的部位。
 
齒狀回細胞增殖表型。Faiz等人,2005年的插圖片段。[32]

齒狀回被認為有助於記憶的形成,並在抑鬱症中發揮作用。

海馬體在學習和記憶中的作用已經研究了幾十年,特別是自1950年之後。根據手術結果,一名美國男性切除了大部分海馬體。[33]目前尚不清楚海馬體如何促成新記憶的形成,但在該大腦區域發生了一個稱為長時程增強作用(LTP)的過程。[34]LTP涉及在反覆刺激後持久強化突觸連接。[19]雖然齒狀回顯示LTP,但它也是哺乳動物大腦中為數不多的成體神經發生(新神經元的形成)發生的區域之一。一些研究假設新的記憶可以優先使用齒狀回新形成的顆粒細胞,這為區分相似事件的多個實例或多次訪問同一位置提供了一種潛在的機制。[35]相應地,有人提出,未成熟的新生顆粒細胞接受與來自內嗅皮層II層的軸突形成新的突觸連接,通過這種方式,首先將具有適當年齡的年輕顆粒細胞中的事件關聯起來,從而將特定的新事件群作為情景記憶來記憶。[36]通過在迷宮中的表現可以看出,增加的神經發生與改善齧齒動物的空間記憶有關,這一事實強化了這一概念。[37]

已知齒狀回用作預處理單元。雖然CA3子域參與記憶的編碼、存儲和檢索,但齒狀回在模式分離中很重要。[20]當信息通過穿緣通路進入時,齒狀回將非常相似的信息分成不同且獨特的細節。[38][39]這確保了新的記憶被單獨編碼,而無需從先前存儲的類似特徵的記憶中輸入,[13]並準備相關數據以存儲在CA3區域中。[38]模式分離提供了將一個記憶與其他存儲的記憶區分開來的能力。[40]模式分離始於齒狀回。齒狀回中的顆粒細胞使用競爭性學習處理感覺信息,並傳遞初步表示以形成位置場。[41]位置場非常具體,因為它們能夠重新映射和調整發射率以響應細微的感覺信號變化。這種特異性對於模式分離至關重要,因為它可以將記憶彼此區分開來。[40]

齒狀回顯示出一種特定形式的神經可塑性,這是由於新形成的興奮性顆粒細胞的持續整合所致。[13]

臨床意義 編輯

記憶 編輯

將海馬體與記憶形成聯繫起來的順行性遺忘症最突出的早期病例之一是亨利·莫萊森(匿名稱為患者H.M.,直到2008年去世)。[34]他的癲癇症通過手術切除海馬體(左右半球各有自己的海馬體)以及一些周圍組織得到治療。這種有針對性的腦組織切除使莫萊森先生無法形成新的記憶。從那時起,海馬體就被認為對記憶形成至關重要,儘管所涉及的過程尚不清楚。[34]

壓力和抑鬱 編輯

齒狀回也可能在壓力和抑鬱中發揮作用。例如在老鼠中,已發現神經發生隨着抗抑鬱藥的長期治療而增加。[42]壓力的生理效應,通常表現為皮質醇糖皮質激素的釋放,以及交感神經系統自主神經系統的一個分支)的激活,已被證明可抑制靈長類動物的神經發生過程。[43]已知內源性和外源性糖皮質激素都會導致精神病和抑鬱症,[44]這意味着齒狀回的神經發生可能在調節壓力和抑鬱症狀方面發揮重要作用。[45]

血糖 編輯

哥倫比亞大學歐文醫學中心研究人員的研究表明,血糖調節不佳會對齒狀回產生有害影響,從而導致記憶力下降。[46]

其他 編輯

在老鼠身上看到的一些證據表明,齒狀回的神經發生隨着有氧運動而增加。[47]幾項實驗表明,當成年齧齒動物暴露於豐富的環境中時,神經發生(神經組織的發育)通常會增加。[48][49]

突觸相關蛋白DLG1(齒狀回中的一種支架蛋白質)的突變可能在精神分裂症的易感性中起作用。[50][51]

空間行為 編輯

有研究表明,在大約90%的齒狀回細胞被破壞後,老鼠在穿過之前通過的迷宮時遇到了極大的困難。經過多次測試它們是否可以學習迷宮,結果顯示老鼠不能通過迷宮,表明它們的工作記憶嚴重受損。老鼠在放置策略方面也遇到了麻煩,因為它們無法將關於迷宮的學習信息整合到它們的工作記憶中,因此,在後來的試驗中穿過同一個迷宮時,它們無法記住它。每次老鼠進入迷宮,老鼠的表現就好像它第一次看到迷宮一樣。[52]

參考文獻 編輯

  1. ^ Amaral, David G.; Scharfman, Helen E.; Lavenex, Pierre. The dentate gyrus: Fundamental neuroanatomical organization (Dentate gyrus for dummies). The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Progress in Brain Research 163. 2007: 3–790. ISBN 9780444530158. PMC 2492885 . PMID 17765709. doi:10.1016/S0079-6123(07)63001-5. 
  2. ^ 2.0 2.1 Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC. NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory.. Neuron. 2009, 63 (5): 643–56. PMID 19755107. S2CID 5321020. doi:10.1016/j.neuron.2009.08.014 . 
  3. ^ Scharfman, Helen E. (編). The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Elsevier. 2011 [2022-11-19]. ISBN 978-0-08-055175-3. (原始內容存檔於2022-11-19). [頁碼請求]
  4. ^ Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. July 2001, 435 (4): 406–17 [2022-11-19]. PMID 11406822. S2CID 15254735. doi:10.1002/cne.1040. (原始內容存檔於2021-08-31). 
  5. ^ Ponti G, Peretto P, Bonfanti L. Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLOS ONE. 2008, 3 (6): e2366. Bibcode:2008PLoSO...3.2366P. PMC 2396292 . PMID 18523645. doi:10.1371/journal.pone.0002366 . 
  6. ^ Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. March 2018, 555 (7696): 377–381. Bibcode:2018Natur.555..377S. PMC 6179355 . PMID 29513649. doi:10.1038/nature25975. 
  7. ^ Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. April 2018, 22 (4): 589–599.e5. PMC 5957089 . PMID 29625071. doi:10.1016/j.stem.2018.03.015. 
  8. ^ Abbott, Louise C.; Nigussie, Fikru. Adult neurogenesis in the mammalian dentate gyrus. Anatomia, Histologia, Embryologia. January 2020, 49 (1): 3–16. PMID 31568602. doi:10.1111/ahe.12496 . 
  9. ^ Tuncdemir, Sebnem Nur; Lacefield, Clay Orion; Hen, Rene. Contributions of adult neurogenesis to dentate gyrus network activity and computations. Behavioural Brain Research. November 2019, 374: 112112. PMC 6724741 . PMID 31377252. doi:10.1016/j.bbr.2019.112112. 
  10. ^ Treves, A.; Tashiro, A.; Witter, M.P.; Moser, E.I. What is the mammalian dentate gyrus good for?. Neuroscience. July 2008, 154 (4): 1155–1172. PMID 18554812. S2CID 14710031. doi:10.1016/j.neuroscience.2008.04.073. 
  11. ^ 11.0 11.1 Scharfman, Helen E. The enigmatic mossy cell of the dentate gyrus. Nature Reviews Neuroscience. September 2016, 17 (9): 562–575. PMC 5369357 . PMID 27466143. doi:10.1038/nrn.2016.87. 
  12. ^ Haines, D; Mihailoff, G. Fundamental neuroscience for basic and clinical applications Fifth. 2018: 461. ISBN 9780323396325. 
  13. ^ 13.0 13.1 13.2 13.3 Tuncdemir, Sebnem Nur; Lacefield, Clay Orion; Hen, Rene. Contributions of adult neurogenesis to dentate gyrus network activity and computations. Behavioural Brain Research. November 2019, 374: 112112. PMC 6724741 . PMID 31377252. doi:10.1016/j.bbr.2019.112112. 
  14. ^ Nadler, J. Victor. The recurrent mossy fiber pathway of the epileptic brain. Neurochemical Research. 2003, 28 (11): 1649–1658. PMID 14584819. S2CID 2566342. doi:10.1023/a:1026004904199. 
  15. ^ Seress, László; Mrzljak, Ladislav. Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Research. March 1987, 405 (1): 169–174. PMID 3567591. S2CID 23358962. doi:10.1016/0006-8993(87)91003-1. 
  16. ^ Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989, 31 (3): 571–591. PMID 2687721. S2CID 28430607. doi:10.1016/0306-4522(89)90424-7. 
  17. ^ Legéndy CR. On the 'data stirring' role of the dentate gyrus of the hippocampus. Reviews in the Neurosciences. 2017, 28 (6): 599–615. PMID 28593904. S2CID 3716652. doi:10.1515/revneuro-2016-0080. 
  18. ^ Elgendy, Azza. Band of Giacomini | Radiology Reference Article | Radiopaedia.org. Radiopaedia. [17 October 2019]. (原始內容存檔於2021-05-26). 
  19. ^ 19.0 19.1 Blumenfeld, Hal. Neuroanatomy through clinical cases 2nd. Sunderland, Mass.: Sinauer Associates. 2010. ISBN 978-0878936137. 
  20. ^ 20.0 20.1 20.2 Senzai, Yuta. Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neuroscience Research. March 2019, 140: 43–52. PMID 30408501. S2CID 53220907. doi:10.1016/j.neures.2018.11.003. 
  21. ^ Nolte, John. The Human Brain: An Introduction to Its Functional Neuroanatomy fifth. 2002: 570–573. 
  22. ^ Rachel A. Dalley; Lydia L. Ng; Angela L. Guillozet-Bongaarts. Dentate Gyrus. Nature Precedings. 2008. doi:10.1038/npre.2008.2095.1 . 
  23. ^ Bayer SA, Altman J. Hippocampal development in the rat: cytogenesis and morphogenesis examined with autoradiography and low-level X-irradiation. J. Comp. Neurol. November 1974, 158 (1): 55–79. PMID 4430737. S2CID 17968282. doi:10.1002/cne.901580105. 
  24. ^ Bayer SA, Altman J. The Human Brain During The Early First Trimester. 5 Atlas of Human Central Nervous System Development. 2008. Appendix, p. 497. 
  25. ^ Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med. November 1998, 4 (11): 1313–7. PMID 9809557. doi:10.1038/3305 . 
  26. ^ Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. November 1990, 301 (3): 365–81. PMID 2262596. S2CID 7425653. doi:10.1002/cne.903010304. 
  27. ^ Angevine JB. Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp Neurol Suppl. October 1965, (Suppl 2): Suppl 2:1–70. PMID 5838955. 
  28. ^ Bayer SA, Yackel JW, Puri PS. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science. May 1982, 216 (4548): 890–2. Bibcode:1982Sci...216..890B. PMID 7079742. doi:10.1126/science.7079742. 
  29. ^ Bayer SA. Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res. 1982, 46 (3): 315–23. PMID 7095040. S2CID 18663323. doi:10.1007/bf00238626. 
  30. ^ Amaral, David G.; Scharfman, Helen E.; Lavenex, Pierre. The dentate gyrus: Fundamental neuroanatomical organization (Dentate gyrus for dummies). The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Progress in Brain Research 163. 2007: 3–790. ISBN 9780444530158. PMC 2492885 . PMID 17765709. doi:10.1016/S0079-6123(07)63001-5. 
  31. ^ Oomen, Charlotte A.; Girardi, Carlos E. N.; Cahyadi, Rudy; Verbeek, Eva C.; Krugers, Harm; Joëls, Marian; Lucassen, Paul J. Opposite Effects of Early Maternal Deprivation on Neurogenesis in Male versus Female Rats. PLOS ONE. 29 January 2009, 4 (1): e3675. Bibcode:2009PLoSO...4.3675O. PMC 2629844 . PMID 19180242. doi:10.1371/journal.pone.0003675 . 
  32. ^ Faiz M, Acarin L, Castellano B, Gonzalez B. Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain. BMC Neurosci. 2005, 6 (1): 26. PMC 1087489 . PMID 15826306. doi:10.1186/1471-2202-6-26. 
  33. ^ Benedict Carey. H. M., an Unforgettable Amnesiac, Dies at 82. The New York Times. 4 December 2008 [5 December 2008]. (原始內容存檔於2018-06-13). In 1953, he underwent an experimental brain operation in Hartford to correct a seizure disorder, only to emerge from it fundamentally and irreparably changed. He developed a syndrome neurologists call profound amnesia. He had lost the ability to form new declarative memories. 
  34. ^ 34.0 34.1 34.2 Kandel ER, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ. Principles of neural science 5th. McGraw Hill Professional. 2013. ISBN 978-0-07-139011-8. 
  35. ^ Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell. March 2012, 149 (1): 188–201. PMC 3319279 . PMID 22365813. doi:10.1016/j.cell.2012.01.046. 
  36. ^ Kovács KA. Episodic Memories: How do the Hippocampus and the Entorhinal Ring Attractors Cooperate to Create Them?. Frontiers in Systems Neuroscience. September 2020, 14: 68. PMC 7511719 . PMID 33013334. doi:10.3389/fnsys.2020.559186 . 
  37. ^ Bliss RM. "Food and the Aging Mind". First in a Series: Nutrition and Brain Function. USDA. USDA.gov. August 2007 [27 February 2010]. (原始內容存檔於2021-02-12). 
  38. ^ 38.0 38.1 Jonas, Peter; Lisman, John. Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Frontiers in Neural Circuits. 10 September 2014, 8: 107. PMC 4159971 . PMID 25309334. doi:10.3389/fncir.2014.00107 . 
  39. ^ Lamothe-Molina, Paul J.; Franzelin, Andreas; Auksutat, Lea; Laprell, Laura; Alhbeck, Joachim; Kneussel, Matthias; Engel, Andreas K.; Morellini, Fabio; Oertner, Thomas G. cFos ensembles in the dentate gyrus rapidly segregate over time and do not form a stable map of space (PDF). 31 August 2020 [2022-11-22]. S2CID 221510080. doi:10.1101/2020.08.29.273391. (原始內容存檔 (PDF)於2022-11-22). 
  40. ^ 40.0 40.1 Moser, Edvard I.; Kropff, Emilio; Moser, May-Britt. Place Cells, Grid Cells, and the Brain's Spatial Representation System. Annual Review of Neuroscience. 1 July 2008, 31 (1): 69–89. PMID 18284371. doi:10.1146/annurev.neuro.31.061307.090723. 
  41. ^ Rolls, Edmund T. The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience. 2013, 7: 74. PMC 3812781 . PMID 24198767. doi:10.3389/fnsys.2013.00074 . 
  42. ^ Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. December 2000, 20 (24): 9104–10. PMC 6773038 . PMID 11124987. doi:10.1523/JNEUROSCI.20-24-09104.2000. 
  43. ^ Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. U.S.A. March 1998, 95 (6): 3168–71. Bibcode:1998PNAS...95.3168G. PMC 19713 . PMID 9501234. doi:10.1073/pnas.95.6.3168 . 
  44. ^ Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry. May 2000, 5 (3): 262–9. PMID 10889528. doi:10.1038/sj.mp.4000712 . 
  45. ^ Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. Antidepressants recruit new neurons to improve stress response regulation. Mol. Psychiatry. December 2011, 16 (12): 1177–88. PMC 3223314 . PMID 21537331. doi:10.1038/mp.2011.48. 
  46. ^ Blood Sugar Control Linked to Memory Decline, Study Says. The New York Times. 1 January 2009 [2011-03-13]. (原始內容存檔於2021-02-28). 
  47. ^ Praag, H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience. 1999, 2 (3): 266–270. PMID 10195220. S2CID 7170664. doi:10.1038/6368. 
  48. ^ Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. April 1997, 386 (6624): 493–5. Bibcode:1997Natur.386..493K. PMID 9087407. S2CID 4281128. doi:10.1038/386493a0. 
  49. ^ Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. May 2005, 486 (1): 39–47. PMID 15834963. S2CID 8386870. doi:10.1002/cne.20493. hdl:2429/15467 . 
  50. ^ Boccitto M, Doshi S, Newton IP, Nathke I, Neve R, Dong F, Mao Y, Zhai J, Zhang L, Kalb R. Opposing actions of the synapse-associated protein of 97-kDa molecular weight (SAP97) and Disrupted in Schizophrenia 1 (DISC1) on Wnt/β-catenin signaling. Neuroscience. June 2016, 326: 22–30. PMC 4853273 . PMID 27026592. doi:10.1016/j.neuroscience.2016.03.048. 
  51. ^ Kay, Yuni; Tsan, Linda; Davis, Elizabeth A.; Tian, Chen; Décarie-Spain, Léa; Sadybekov, Anastasiia; Pushkin, Anna N.; Katritch, Vsevolod; Kanoski, Scott E.; Herring, Bruce E. Schizophrenia-associated SAP97 mutations increase glutamatergic synapse strength in the dentate gyrus and impair contextual episodic memory in rats. Nature Communications. December 2022, 13 (1): 798. PMC 8831576 . PMID 35145085. S2CID 246704130. doi:10.1038/s41467-022-28430-5 . 
  52. ^ Xavier GF, Costa VC. Dentate gyrus and spatial behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry. August 2009, 33 (5): 762–73. PMID 19375476. S2CID 1115081. doi:10.1016/j.pnpbp.2009.03.036 . 

外部連結 編輯