# 反三角函数积分表

## 反正弦

• ${\displaystyle \int \arcsin {\frac {x}{c}}\ dx=x\arcsin {\frac {x}{c}}+{\sqrt {c^{2}-x^{2}}}}$
• ${\displaystyle \int x\arcsin {\frac {x}{c}}\ dx=\left({\frac {x^{2}}{2}}-{\frac {c^{2}}{4}}\right)\arcsin {\frac {x}{c}}+{\frac {x}{4}}{\sqrt {c^{2}-x^{2}}}}$
• ${\displaystyle \int x^{2}\arcsin {\frac {x}{c}}\ dx={\frac {x^{3}}{3}}\arcsin {\frac {x}{c}}+{\frac {x^{2}+2c^{2}}{9}}{\sqrt {c^{2}-x^{2}}}}$
• ${\displaystyle \int x^{n}\arcsin x\ dx={\frac {1}{n+1}}\left(x^{n+1}\arcsin x+{\frac {x^{n}{\sqrt {1-x^{2}}}-nx^{n-1}\arcsin x}{n+1}}+{\frac {n(n-1)}{n+1}}\int x^{n-2}\arcsin x\ dx\right)}$

## 反正切

• ${\displaystyle \int \arctan {\frac {x}{c}}\ dx=x\arctan {\frac {x}{c}}-{\frac {c}{2}}\ln(x^{2}+c^{2})}$
• ${\displaystyle \int x\arctan {\frac {x}{c}}\ dx={\frac {c^{2}+x^{2}}{2}}\arctan {\frac {x}{c}}-{\frac {cx}{2}}}$
• ${\displaystyle \int x^{2}\arctan {\frac {x}{c}}\ dx={\frac {x^{3}}{3}}\arctan {\frac {x}{c}}-{\frac {cx^{2}}{6}}+{\frac {c^{3}}{6}}\ln {c^{2}+x^{2}}}$
• ${\displaystyle \int x^{n}\arctan {\frac {x}{c}}\ dx={\frac {x^{n+1}}{n+1}}\arctan {\frac {x}{c}}-{\frac {c}{n+1}}\int {\frac {x^{n+1}}{c^{2}+x^{2}}}\ dx,\quad n\neq 1}$

## 反正割

• ${\displaystyle \int \operatorname {arcsec} {\frac {x}{a}}\ dx=x\operatorname {arcsec} {\frac {x}{a}}-a\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-a^{2}}}\right|=x\operatorname {arcsec} {\frac {x}{a}}+a\operatorname {sgn}(x)\ln \left|x-{\sqrt {x^{2}-a^{2}}}\right|}$
• ${\displaystyle \int x\operatorname {arcsec} x\ dx={\frac {1}{2}}\left(x^{2}\operatorname {arcsec} x-{\sqrt {x^{2}-1}}\right)}$
• ${\displaystyle \int x^{n}\operatorname {arcsec} x\ dx={\frac {1}{n+1}}\left\{x^{n+1}\operatorname {arcsec} x-{\frac {1}{n}}\left[x^{n-1}{\sqrt {x^{2}-1}}+(1-n)\left(x^{n-1}\operatorname {arcsec} x+(1-n)\int x^{n-2}\operatorname {arcsec} x\ dx\right)\right]\right\}}$

## 反余切

• ${\displaystyle \int \operatorname {arccot} {\frac {x}{c}}\ dx=x\operatorname {arccot} {\frac {x}{c}}+{\frac {c}{2}}\ln(c^{2}+x^{2})}$
• ${\displaystyle \int x\operatorname {arccot} {\frac {x}{c}}\ dx={\frac {c^{2}+x^{2}}{2}}\operatorname {arccot} {\frac {x}{c}}+{\frac {cx}{2}}}$
• ${\displaystyle \int x^{2}\operatorname {arccot} {\frac {x}{c}}\ dx={\frac {x^{3}}{3}}\operatorname {arccot} {\frac {x}{c}}+{\frac {cx^{2}}{6}}-{\frac {c^{3}}{6}}\ln(c^{2}+x^{2})}$
• ${\displaystyle \int x^{n}\operatorname {arccot} {\frac {x}{c}}\ dx={\frac {x^{n+1}}{n+1}}\operatorname {arccot} {\frac {x}{c}}+{\frac {c}{n+1}}\int {\frac {x^{n+1}}{c^{2}+x^{2}}}\ dx,\quad n\neq 1}$