平方反比定律

物理定律
(重定向自反平方定律

反平方定律是一个物理学定律,又称平方反比定律逆平方律反平方律;如果任何一个物理定律中,某种物理量的分布或强度,会按照距离源的平方反比而下降,那么这个定律就可以称为是一个反平方定律

S代表光源,而r代表測量點。光線的總數取決於光源的強度並且與增加的距離恆定。光線的密度越高(每單位面積的光線)意味著更強的光場。光線的密度與光源的距離的平方成反比,是因為球的表面積隨著半徑的平方而增加。因此,光場的強度與光源的距離的平方成反比。

例子:

牛頓萬有引力定律编辑

引力是具有质量的物体之间的吸引力。牛顿定律指出: :两个'点质量'之间的引力与其质量的乘积成比例,与它们距离的平方成反比。引力总是吸引的,并在它们的连线上起作用。[來源請求] 如果每个物体中物质的分布是球形对称的,则对象可以视为点质量,而不用近似,如壳层定理所示。否则,如果我们想要计算巨大物体之间的吸引力,我们需要以矢量方式添加所有点位吸引力,而净吸引力可能不为精确的平方反比。但是,如果巨大物体之间的距离与其大小相比要大得多,那么在计算引力时,将质量视为位于物体[质心]的点质量是合理的。 作为引力定律,1645年伊斯梅尔·布利亚尔杜斯(Ismaël Bullialdus)提出了这一万有引力定律。但布利亚尔杜斯不接受开普勒的第二和第三定律,他也不欣赏克里斯蒂安·惠更斯的圆周运动理解(由中央力量拉到一边的直线运动)。 事实上,布利亚尔杜斯认为太阳的力量在近地点吸引,在远地点排斥。罗伯特·胡克乔瓦尼·阿方索·博雷利在1666年都把引力作为一种有吸引力的力量[1](胡克于3月21日在伦敦皇家学会的"重力"讲座;[2]博雷利的《行星理论》于1666年晚些时候出版)[3])。 胡克在1670年格雷舍姆的讲座中说,引力适用于"所有天体",并增加了引力随着距离而减弱,在没有这种力时,物体以直线移动的原则。到1679年,胡克认为引力具有反向平方性,并在给[艾萨克·牛顿]的一封信中传达了这一点[4] "我的假设是,吸引力总是与中心的距离的倒数成平方关系" 。[5]

胡克仍然对牛顿声称发明这一原理感到痛苦, 尽管牛顿的 1686 年 原理承认了胡克,与雷恩和哈雷一起,分别发现了太阳系中的逆平方定律,[6]以及部分归功于布利亚尔杜斯。[7]

庫侖定律编辑

两个带电粒子之间的吸引力或排斥力,不仅与电荷的乘积成正比外,还与它们之间的距离的平方成反比;这被称为库仑定律。指数与2的偏差小于 1015分之1。[8]

 

  1. ^ 胡克的引力也并非通用,尽管它比之前的假设更普遍:见柯蒂斯·威尔逊(1989年)第239页,"牛顿在天文学方面的成就", ch.13 (第233-274页) 在"行星天文学从文艺复兴时期到天体物理学的兴起:2A:第谷·布拉赫到牛顿",CUP 1989.
  2. ^ 托马斯·伯奇,"伦敦皇家学会的历史",...(英国伦敦:1756年),第2卷,第68-73页;尤其看第70-72页.
  3. ^ 乔瓦尼·阿方索·博雷利,Theoricae ([//web.archive.org/web/20200801234939/https://books.google.com/books?id=YZk_AAAAcAAJ&pg=PT4#v=onepage&q&f=false 页面存档备份,存于互联网档案馆) Mediceorum Planetarum ex Causius Physicis Deductae]][从物理原因上推断的美第奇行星(即木星的卫星)的(运动)理论](佛罗伦萨,(意大利):1666年)。"。"
  4. ^ Koyré, Alexandre. An Unpublished Letter of Robert Hooke to Isaac Newton. Isis. 1952, 43 (4): 312–337. JSTOR 227384. PMID 13010921. doi:10.1086/348155. 
  5. ^ 霍克1680年1月6日致牛顿的信(Koyré 1952:332 )。
  6. ^ 牛顿在书1(所有版本)中第4号connection in the Scholium中承认雷恩、胡克和哈雷:例如,见《原理》的1729年英文译本,第66页.
  7. ^ 在1686年6月20日写给埃德蒙·哈雷的一封信中,牛顿写道:"布利亚尔杜斯写道,所有力量都以太阳为中心,并与太阳的距离成平方反比。"见:I.伯纳德·科恩和乔治·史密斯,ed.s,《牛顿的剑桥伴侣》(英国剑桥:剑桥大学出版社,2002年),第204页
  8. ^ Williams, Faller, Hill, E.; Faller, J.; Hill, H., New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass, Physical Review Letters, 1971, 26 (12): 721–724, Bibcode:1971PhRvL..26..721W, doi:10.1103/PhysRevLett.26.721