表征学习
此條目可参照英語維基百科相應條目来扩充。 |
在机器学习中,特征学习(feature learning)或表征学习(representation learning)[1]是学习一个特征的技术的集合:将原始数据转换成为能够被机器学习来有效开发的一种形式。它避免了手动提取特征的麻烦,允许计算机学习使用特征的同时,也学习如何提取特征:学习如何学习。
机器学习任务,例如分类问题,通常都要求输入在数学上或者在计算上都非常便于处理,在这样的前提下,特征学习就应运而生了。然而,现实世界中的数据,例如圖片、影片,以及感測器的測量值都非常的複雜、冗長又多變,如何有效的提取出特征并且将其表达出來成為了一個重要挑戰。传统的手动提取特征需要大量的人力并且依赖于非常专业的知识。同时,还不便于推广。这就要求特征学习技术的整体设计非常有效,自动化,并且易于推广。
特征学习可以被分为两类:监督的和无监督的,类似于机器学习。
监督特征学习
编辑监督特征学习就是从被标记的数据中学习特征。大致有以下几种方法。
监督字典学习
编辑总体来说,字典学习是为了从输入数据获得一组的表征元素,使每一个数据点可以(近似的)通过对表征元素加权求和来重构。字典中的元素和权值可以通过最小化表征误差来得到。通过L1正则化可以让权值变得稀疏(例,每一个数据点的表征只有几个非零的权值)。
监督字典学习利用输入数据的结构和给定的标签(输出)来优化字典。例如,2009年Mairal等人提出的一种监督字典学习方案被应用在了分类问题上。这个方案的优化目标包括最小化分类误差,表征误差,权值的1范数(L1正则化)和分类器参数的2范数。 有监督的字典学习可以被视为一个三层神经网络(一层隐含层),第一层(输入层)到第二层(隐含层)是表征学习,第二层到第三层(输出)是分类器的参数回归。
神经网络
编辑神经网络是通过多层由内部相连的节点组成的网络的一个学习算法。它的命名是受到神经系统的启发,它的每一个节点就像神经系统里的神经元,而每一条边就像一条突触。神经网络里面的每一条边都有对应的权值,而整个网络则定义运算法则将输入数据转换成为输出。神经网络的网络函数通过权值来刻画输入层跟输出层之间的关系。通过适当的调整网络函数,可以尽量最小化损耗的同时解决各种各样的机器学习任务。
无监督特征学习
编辑κ-平均算法
编辑主要成分分析
编辑独立成分分析
编辑局部线性嵌入算法
编辑无监督字典学习
编辑另見
编辑参考文献
编辑- ^ Y. Bengio; A. Courville; P. Vincent. Representation Learning: A Review and New Perspectives. IEEE Trans. PAMI, special issue Learning Deep Architectures. 2013, 35: 1798–1828. doi:10.1109/tpami.2013.50.
- ^ Nathan Srebro; Jason D. M. Rennie; Tommi S. Jaakkola. Maximum-Margin Matrix Factorization. NIPS. 2004.
- ^ 引用错误:没有为名为
coates2011
的参考文献提供内容 - ^ Csurka, Gabriella; Dance, Christopher C.; Fan, Lixin; Willamowski, Jutta; Bray, Cédric. Visual categorization with bags of keypoints (PDF). ECCV Workshop on Statistical Learning in Computer Vision. 2004 [2016-04-17]. (原始内容存档 (PDF)于2021-03-08).
- ^ Daniel Jurafsky; James H. Martin. Speech and Language Processing. Pearson Education International. 2009: 145–146.