摘要
Equations
The observed angular velocity of the frame drag in the system of the coordinate bookkeeper far away from the mass is[1]
in units of and with
The radius of gyration is given by[2]
and the cartesian coordinates in the bookkeeper's frame of reference are
The gravitational time dilation component is
so the observed transverse velocity of a frame dragged zero angular momentum probe is
and the local velocity
That is exactly the speed of light at the outer edge of the outer ergosphere at
which corresponds to a Boyer-Lindquist radius of and a cartesian radius of at the equator.
References
- ↑ Andrei & Valeri Frolov: Rigidly rotating ZAMO surfaces in the Kerr spacetime, page 1, eq. 5
- ↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes, pages 5, 6 etc
许可协议
我,本作品著作权人,特此采用以下许可协议发表本作品:
- 您可以自由地:
- 共享 – 复制、发行并传播本作品
- 修改 – 改编作品
- 惟须遵守下列条件:
- 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
- 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
https://creativecommons.org/licenses/by-sa/4.0CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 truetrue
File usage on Wikipedia