English: All possible photon-orbits around a black hole rotating with the spin-parameter a=Jc/G/M²=1. The position of photon and ZAMO is shown for t=150GM/c³ coordinate time. Initial position: θ0=π/2, φ0=0.
Deutsch: Alle möglichen Photonenorbits um ein mit dem Spinparameter a=Jc/G/M²=1 rotierendes schwarzes Loch. Gezeigt wird die Position eines Photons und eines ZAMO nach einer Koordinatenzeit von t=150GM/c³. Die Startposition ist auf θ0=π/2, φ0=0.
01) a Spin parameter 08) δ local equatorial 15) L Axial angular momentum 22) ω Frame dragging delayed angular velocity
of the central mass inclination angle conserved quantity observed at infinty
02) r Boyer-Lindquist radius 09) δ observed equatorial 16) L Poloidial component 23) v Frame dragging local velocity
constant for photon orbits inclination angle of the angular momentum equals 1 at the outer ergosurface
03) φ Longitude 10) δ frame drag angle 17) p Radial component 24) Ω Frame dragging observed velocity
measured from infinity difference local-observed of the momentum in cartesian coordinates
04) θ Latitude 11) E kinetic energy 18) R Radius 25) v Observed particle velocity
0=northpole, π=southpole local energy of the photon cartesian coordinate in the bookeepers frame of reference
05) ς Grav. time dilation 12) E potential energy 19) x X-axis 26) v Local escape velocity
depending on r and θ total-kinetic cartesian coordinate equals 1 at the outer horizon
06) t Coordinate time 13) E total energy 20) y Y-axis 27) v Delayed particle velocity
of the distant bookeeper conserved quantity cartesian coordinate differential velocity vs a local ZAMO
07) λ Affine parameter 14) Q Carter constant 21) z Z-axis 28) v Local particle velocity
takes the place of τ if μ=0 conserved quantity cartesian coordinate relative velocity vs a local ZAMO
Inclination angle by radius
For a given a and r and starting from θ0=π/2 the required initial orbital inclination angle δ0 for a photon's circular orbit can be found[1] by setting
and solving for δ0. The real solutions of the polynomial give one possible orbit in the positive poloidial direction, and one other in the opposite z-direction (since the metric is axially symmetric the sign of the coaxial angular momentum can be both). The shorthand terms are:
All photon-orbits have a constant Boyer-Lindquist-radius.[2][3]
Equations of motion
All formulas come in natural units:
Coordinate time t by proper time τ (dt/dτ), where τ becomes the affine parameter λ for massless particles:
Radial coordinate time derivative (dr/dτ):
Time derivative of the covariant momentum's r-component (pr/dτ):
Relation to the local velocity:
Latitudinal time derivative (dθ/dτ):
Time derivative of the covariant momentum's θ-component (pθ/dτ):
Relation to the local velocity:
Longitudinal time derivative (dФ/dτ):
Time derivative of the covariant momentum's Ф-component (pФ/dτ):
Carter-constant:
Carter k:
Total energy:
Angular momentum on the Ф-axis:
with the radius of gyration
Frame Dragging angular velocity (dФ/dt):
Gravitational time dilation (dt/dτ):
Local velocity on the r-axis:
Local velocity on the θ-axis:
Local velocity on the Ф-axis:
with the cartesian coordinates:
The observed velocity β is given by:
The local escape velocity is given by the relation:
1) added a numerical display in case someone wants to look at the data, 2) perspectivic rotation for some example of closed loop orbits, 3) better quality and more frames for the cost of higher filesize (but since everybody is watching 4k videos in the...