打开主菜单

matplotlib

Python编程语言的一个绘图库

matplotlibPython编程语言及其数值数学扩展包 NumPy的可视化操作界面。它利用通用的图形用户界面工具包,如Tkinter, wxPython, QtGTK+,向应用程序嵌入式绘图提供了应用程序接口(API)。此外,matplotlib还有一个基于图像处理库(如开放图形库OpenGL)的pylab接口,其设计与MATLAB非常类似--尽管并不怎么好用。SciPy就是用matplotlib进行图形绘制。

matplotlib
Screenshot of matplotlib plots and code
Screenshot of matplotlib plots and code
原作者 John D. Hunter
開發者 Michael Droettboom, et al.
初始版本 2003年,​16年前​(2003[1]
穩定版本
3.0.3
(2019年2月26日,​5個月前​(2019-02-26[2]
源代码库 編輯維基數據鏈接
编程语言 Python
操作系统 跨平臺
类型 Plotting
许可协议 matplotlib license
网站 matplotlib.org

matplotlib最初由John D. Hunter撰写,它拥有一个活跃的开发社区,并且根据BSD样式许可证分发。 在John D. Hunter2012年去世前不久,Michael Droettboom被提名为matplotlib的主要开发者。

截至到2015年10月30日,matplotlib 1.5.x支持Python 2.7到3.5版本。Matplotlib 1.2是第一个支持Python 3.x的版本。Matplotlib 1.4是支持Python 2.6的最后一个版本。[3]

目录

与MATLAB的比较编辑

pyplot是matplotlib的一个模块,它提供了一个类似MATLAB的接口。 matplotlib被设计得用起来像MATLAB,具有使用Python的能力。免费是其优点。

与 Gnuplot的比较编辑

gnuplot和matplotlib都是成熟的开源项目。 它们都可以产生多种不同绘图类型。 虽然很难指定一种某人能做而他人不能做的图形类型,但它们仍然具有不同的优点和缺点:

优点 缺点
Matplotlib
  • 带有内置代码的默认绘图样式
  • 与Python的深度集成
  • Matlab风格的编程接口(对一些人来说是优点,但对于其他人来说可能是缺点)。
  • 图形绘制相较Gnuplot更加美观
  • 高度依赖其他包,如Numpy。
  • 只适用于Python:很难/不可能在Python以外的语言中使用。 (但可以从Julia通过PyPlot软件包使用)
Gnuplot
  • 跨语言解决方案:可以用作通过管道或文件以不同语言编写的应用程序(例如GNU Octave,Maxima,JavaGnuplotHybrid)中的绘图引擎。
  • 独立程序:没有外部依赖。
  • 处理大型数据集时非常快。
  • 更容易操纵绘图细节
  • 旧的默认绘图样式:通常需要小的调整以产生有吸引力的图。
  • 在开发中活跃成员的数量较少(与Matplotlib相比)。

例子编辑

 曲线图

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b)
>>> plt.show()

直方图

>>> import matplotlib.pyplot as plt
>>> from numpy.random import normal,rand
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

散点图

>>> import matplotlib.pyplot as plt
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D 图

>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> fig = plt.figure()
>>> ax = fig.gca(projection='3d')
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm)
>>> plt.show()

更多例子

参考资料编辑