原始檔案 (1,024 × 1,024 像素,檔案大小:5 KB,MIME 類型:image/png


摘要

描述
English: This tartan-like graph shows the Ising model probability density for the two-sided lattice using the dyadic mapping.

That is, a lattice configuration of length

is understood to consist of a sequence of "spins" . This sequence may be represented by two real numbers with

and

The energy of a given configuration is computed using the classical Hamiltonian,

Here, is the shift operator, acting on the lattice by shifting all spins over by one position:

The interaction potential is given by the Ising model interaction

Here, the constant is the interaction strength between two neighboring spins and , while the constant may be interpreted as the strength of the interaction between the magnetic field and the magnetic moment of the spin.

The set of all possible configurations form a canonical ensemble, with each different configuration occurring with a probability given by the Boltzmann distribution

where is Boltzmann's constant, is the temperature, and is the partition function. The partition function is defined to be such that the sum over all probabilities adds up to one; that is, so that

Image details

The image here shows for the Ising model, with , and temperature . The lattice is finite sized, with , so that all lattice configurations are represented, each configuration denoted by one pixel. The color choices here are such that black represents values where are zero, blue are small values, with yellow and red being progressively larger values.

As an invariant measure

This fractal tartan is invariant under the Baker's map. The shift operator on the lattice has an action on the unit square with the following representation:

This map (up to a reflection/rotation around the 45-degree axis) is essentially the Baker's map or equivalently the Horseshoe map. As the article on the Horseshoe map explains, the invariant sets have such a tartan pattern (an appropriately deformed Sierpinski carpet). In this case, the invariance arises from the translation invariance of the Gibbs states of the Ising model: that is, the energy associated with the state is invariant under the action of :

for all integers . Similarly, the probability density is invariant as well:

The naive classical treatment given here suffers from conceptual difficulties in the limit. These problems can be remedied by using a more appropriate topology on the set of states that make up the configuration space. This topology is the cylinder set topology, and using it allows one to construct a sigma algebra and thus a measure on the set of states. With this topology, the probability density can be understood to be a translation-invariant measure on the topology. Indeed, there is a certain sense in which the seemingly fractal patterns generated by the iterated Baker's map or horseshoe map can be understood with a conventional and well-behaved topology on a lattice model.

Created by Linas Vepstas User:Linas on 24 September 2006
日期 2006年9月24日 (原始上傳日期)
來源
作者 英文維基百科Linas

授權條款

Linas 位于英语维基百科,此作品的版權所有人,決定用以下授權條款發佈本作品:
w:zh:創用CC
姓名標示 相同方式分享
此檔案採用創用CC 姓名標示-相同方式分享 3.0 未在地化版本授權條款。 受免責聲明的約束。
姓名標示: Linas 位于英语维基百科
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
已新增授權條款標題至此檔案,作為GFDL授權更新的一部份。
GNU head 已授權您依據自由軟體基金會發行的無固定段落、封面文字和封底文字GNU自由文件授權條款1.2版或任意後續版本,對本檔進行複製、傳播和/或修改。該協議的副本列在GNU自由文件授權條款中。 受免責聲明的約束。

原始上傳日誌

Transferred from en.wikipedia to Commons by Liftarn using CommonsHelper.

The original description page was here. All following user names refer to en.wikipedia.
  • 2006-09-24 16:14 Linas 1024×1024× (5013 bytes) Created by Linas Vepstas [[User:Linas]] on 24 September 2006

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2012年8月28日 (二) 09:26於 2012年8月28日 (二) 09:26 版本的縮圖1,024 × 1,024(5 KB)File Upload Bot (Magnus Manske)Transfered from en.wikipedia by User:liftarn using CommonsHelper

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: