# 量 (物理)

（重定向自數量

（quantity，amount）是作为幅度和重复次数出现的一种属性；某量的大小，通常可用一个数乘以一个参照对象来一起表示，称为量值（magnitude，quantity value），参照对象可以是：测量单位、测量程序、标准物质、约定参考标尺。

## 更多实例

• 1.76升牛奶，连续的量
• 2πr米，其中r是用米表达的圆的半径，也是一个连续量
• 一顆苹果，两顆苹果，三顆苹果，其中数字是一个代表可数的物体（苹果）的集合的整数
• 500人（也是一个个数）
• 通常表示两个物体
• 少数几个通常指三个或四个

## 参考资料

• Aristotle, Logic (Organon): Categories, in Great Books of the Western World, V.1. ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
• Aristotle, Physical Treatises: Physics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
• Aristotle, Metaphysics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
• Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematische-Physicke Klasse, 53, 1-64.
• Klein, J. (1968). Greek Mathematical Thought and the Origin of Algebra. Cambridge. Mass: MIT Press.
• Laycock, H. (2006). Words without Objects: Oxford, Clarendon Press. http://www.oxfordscholarship.com/oso/public/content/philosophy/0199281718/toc.html#页面存档备份，存于互联网档案馆
• Michell, J. (1993). The origins of the representational theory of measurement: Helmholtz, Hölder, and Russell. Studies in History and Philosophy of Science, 24, 185-206.
• Michell, J. (1999). Measurement in Psychology. Cambridge: Cambridge University Press.
• Michell, J. & Ernst, C. (1996). The axioms of quantity and the theory of measurement: translated from Part I of Otto Hölder’s German text "Die Axiome der Quantität und die Lehre vom Mass". Journal of Mathematical Psychology, 40, 235-252.
• Newton, I. (1728/1967). Universal Arithmetic: Or, a Treatise of Arithmetical Composition and Resolution. In D.T. Whiteside (Ed.), The mathematical Works of Isaac Newton, Vol. 2 (pp. 3-134). New York: Johnson Reprint Corp.
• Wallis, J. Mathesis universalis (as quoted in Klein, 1968).