
「
均方差」重定向至此。關於均方誤差(MSE),詳見「
均方誤差」;關於均方根誤差(RMSE),詳見「
均方根誤差」。
標準差(又稱標準偏差、均方差,英語:Standard Deviation,縮寫SD),數學符號σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内個體間的離散程度;標準差與期望值之比為標準離差率。測量到分佈程度的結果,原則上具有兩種性質:
- 為非負數值(因為開平方後再做平方根);
- 與測量資料具有相同單位(這樣才能比對)。
一個總量的標準差或一個隨機變量的標準差,及一個子集合樣品數的標準差之間,有所差別。其公式如下所列。
標準差的概念由卡爾·皮爾森引入到統計中。
闡述及應用编辑
簡單來說,標準差是一組數值自平均值分散開來的程度的一種測量觀念。一個較大的標準差,代表大部分的數值和其平均值之間差異較大;一個較小的標準差,代表這些數值較接近平均值。
例如,兩組數的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二個集合具有較小的標準差。
表述“相差k个标准差”,即在 X̄ ± kS 的样本(Sample)范围内考量。
標準差可以當作不確定性的一種測量。例如在物理科學中,做重複性測量時,測量數值集合的標準差代表這些測量的精確度。當要決定測量值是否符合預測值,測量值的標準差佔有決定性重要角色:如果測量平均值與預測值相差太遠(同時與標準差數值做比較),則認為測量值與預測值互相矛盾。這很容易理解,因為如果測量值都落在一定數值範圍之外,可以合理推論預測值是否正確。
標準差應用於投資上,可作為量度回報穩定性的指標。標準差數值越大,代表回報遠離過去平均數值,回報較不穩定故風險越高。相反,標準差數值越小,代表回報較為穩定,風險亦較小。
母體的標準差编辑
-
为平均值( )。
简化计算公式编辑
上述公式可以如下代換而簡化:
-
所以:
-
-
-
根號裡面,亦即變異數( )的簡易口訣為:「平方和的平均」減去「平均的平方」。
母體為随机变量编辑
一隨機變量 的標準差定義為:
-
須注意並非所有隨機變量都具有標準差,因為有些隨機變量不存在期望值。
如果隨機變量 為 具有相同機率,則可用上述公式計算標準差。
離散随机变量的标准差编辑
若 是由實數 構成的離散隨機變數(英語:discrete random variable),且每個值的機率相等,則 的標準差定義為:
- ,其中
換成用 來寫,就成為:
- ,其中
目前為止,與母體標準差的基本公式一致。
然而若每個 可以有不同機率 ,則 的标准差定義為:
- ,其中
这里, 为 的数学期望。
连续随机变量的标准差编辑
若 為概率密度 的连续随机变量(英語:continuous random variable),則 的标准差定義為:
-
其中 为 的数学期望:
-
标准差的特殊性质编辑
对于常数 和随机变量 和 :
-
-
-
- 其中:
- 表示随机变量 和 的协方差。
- 表示 ,即 ( 的變異數),對 亦同。
样本的标准差编辑常態分佈的規則编辑
深藍區域是距
平均值小於一個標準差之內的數值範圍,在
常態分佈中,此範圍所佔比率為全部數值之
68%;兩個標準差之內(深藍,藍)的比率合起來為
95%;三個標準差之內(深藍,藍,淺藍)的比率合起來為
99.7%。
在實際應用上,常考慮一組數據具有近似於常態分佈的機率分佈。若其假設正確,則約68%數值分佈在距離平均值有1個標準差之內的範圍,約95%數值分佈在距離平均值有2個標準差之內的範圍,以及約99.7%數值分佈在距離平均值有3個標準差之內的範圍。稱為「68-95-99.7法則」。
-
-
- .[1]
數字比率 標準差值
|
機率
|
包含之外比例
|
---|
百分比
|
百分比
|
比例
|
---|
0.318 639σ
|
25%
|
75%
|
3 / 4
|
0.318 639σ
|
25%
|
75%
|
3 / 4
|
6999674490000000000♠0.674490σ
|
7001500000000000000♠50%
|
7001500000000000000♠50%
|
1 / 7000200000000000000♠2
|
6999994458000000000♠0.994458σ
|
68%
|
32%
|
1 / 3.125
|
1σ
|
7001682689492000000♠68.2689492%
|
7001317310508000000♠31.7310508%
|
1 / 7000315148720000000♠3.1514872
|
7000128155200000000♠1.281552σ
|
80%
|
20%
|
1 / 5
|
7000164485400000000♠1.644854σ
|
90%
|
10%
|
1 / 10
|
7000195996400000000♠1.959964σ
|
95%
|
5%
|
1 / 20
|
2σ
|
7001954499736000000♠95.4499736%
|
7000455002640000000♠4.5500264%
|
1 / 7001219778950000000♠21.977895
|
7000257582900000000♠2.575829σ
|
99%
|
1%
|
1 / 100
|
3σ
|
7001997300204000000♠99.7300204%
|
6999269979600000000♠0.2699796%
|
1 / 370.398
|
7000329052700000000♠3.290527σ
|
99.9%
|
0.1%
|
1 / 7003100000000000000♠1000
|
7000389059200000000♠3.890592σ
|
99.99%
|
0.01%
|
1 / 7004100000000000000♠10000
|
4σ
|
7001999936660000000♠99.993666%
|
6997633400000000000♠0.006334%
|
1 / 7004157870000000000♠15787
|
7000441717300000000♠4.417173σ
|
99.999%
|
0.001%
|
1 / 7005100000000000000♠100000
|
7000450000000000000♠4.5σ
|
99.9993204653751%
|
0.0006795346249%
|
1 / 7005147159535800000♠147159.5358 3.4 / 7006100000000000000♠1000000 (每一邊)
|
7000489163800000000♠4.891638σ
|
7001999999000000000♠99.9999%
|
6996100000000000000♠0.0001%
|
1 / 7006100000000000000♠1000000
|
5σ
|
7001999999426697000♠99.9999426697%
|
6995573303000000000♠0.0000573303%
|
1 / 7006174427800000000♠1744278
|
7000532672399999999♠5.326724σ
|
7001999999900000000♠99.99999%
|
6995100000000000000♠0.00001%
|
1 / 7007100000000000000♠10000000
|
7000573072900000000♠5.730729σ
|
7001999999990000000♠99.999999%
|
6994100000000000000♠0.000001%
|
1 / 7008100000000000000♠100000000
|
7000600000000000000♠6σ
|
7001999999998027000♠99.9999998027%
|
6993197300000000000♠0.0000001973%
|
1 / 7008506797346000000♠506797346
|
7000610941000000000♠6.109410σ
|
7001999999999000000♠99.9999999%
|
6993100000000000000♠0.0000001%
|
1 / 7009100000000000000♠1000000000
|
7000646695100000000♠6.466951σ
|
7001999999999900000♠99.99999999%
|
6992100000000000000♠0.00000001%
|
1 / 7010100000000000000♠10000000000
|
7000680650200000000♠6.806502σ
|
7001999999999990000♠99.999999999%
|
6991100000000000000♠0.000000001%
|
1 / 7011100000000000000♠100000000000
|
7σ
|
99.9999999997440%
|
6990256000000000000♠0.000000000256%
|
1 / 7011390682215445000♠390682215445
|
標準差與平均值之間的關係编辑几何学解释编辑
从几何学的角度出发,标准差可以理解为一个从 维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值, 。它们可以在3维空间中确定一个点 。想像一条通过原点的直线 。如果这组数据中的3个值都相等,则点 就是直线 上的一个点, 到 的距离为0,所以标准差也为0。若这3个值不都相等,过点 作垂线 垂直于 , 交 于点 ,则 的坐标为这3个值的平均数:
-
运用一些代数知识,不难发现点 与点 之间的距离(也就是点 到直线 的距离)是 。在 维空间中,这个规律同样适用,把 换成 就可以了。