特里忒蔡卡方程 (Tritzeica equation)是一个最早由罗马尼亚数学家George Tritzeica在1907年在微分几何领域研究的非线性偏微分方程[ 1] 常见于微分几何学和物理学的非线性偏微分方程:[ 2]
罗马尼亚数学家George Tritzeica
u
x
y
=
e
x
p
(
u
x
,
y
)
−
e
x
p
(
−
2
∗
u
x
,
y
)
{\displaystyle u_{xy}=exp(u_{x,y})-exp(-2*u_{x,y})}
作变换
w
(
x
,
y
)
=
e
x
p
(
u
(
x
,
y
)
)
{\displaystyle w(x,y)=exp(u(x,y))}
得
w
(
x
,
y
)
y
,
x
∗
w
(
x
,
y
)
−
w
(
x
,
y
)
x
∗
w
(
x
,
y
)
y
−
w
(
x
,
y
)
3
+
1
=
0
{\displaystyle w(x,y)_{y,x}*w(x,y)-w(x,y)_{x}*w(x,y)_{y}-w(x,y)^{3}+1=0}
求得行波解,再用反代换
u
(
x
,
y
)
=
l
n
(
w
(
x
,
y
)
)
{\displaystyle u(x,y)=ln(w(x,y))}
即得 原方程的行波解。
u
(
x
,
y
)
=
l
n
(
−
1
/
2
−
(
1
/
2
∗
I
)
∗
(
3
)
+
(
3
/
4
+
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
c
s
c
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
1
/
2
+
(
1
/
2
∗
I
)
∗
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(-1/2-(1/2*I)*{\sqrt {(}}3)+(3/4+(3/4*I)*{\sqrt {(}}3))*csc(_{C}1+_{C}2*x+(3/4)*(1/2+(1/2*I)*{\sqrt {(}}3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
−
1
/
2
−
(
1
/
2
∗
I
)
∗
(
3
)
+
(
3
/
4
+
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
s
e
c
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
1
/
2
+
(
1
/
2
∗
I
)
∗
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(-1/2-(1/2*I)*{\sqrt {(}}3)+(3/4+(3/4*I)*{\sqrt {(}}3))*sec(_{C}1+_{C}2*x+(3/4)*(1/2+(1/2*I)*{\sqrt {(}}3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
−
1
/
2
+
(
1
/
2
∗
I
)
∗
(
3
)
+
(
3
/
4
−
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
c
s
c
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
1
/
2
−
(
1
/
2
∗
I
∗
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(-1/2+(1/2*I)*{\sqrt {(}}3)+(3/4-(3/4*I)*{\sqrt {(}}3))*csc(_{C}1+_{C}2*x+(3/4)*(1/2-(1/2*I*{\sqrt {(}}3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
1
/
4
−
(
1
/
4
∗
I
)
∗
(
3
)
+
(
−
3
/
4
+
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
c
o
t
h
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
−
1
/
2
+
(
1
/
2
∗
I
)
∗
s
q
r
t
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(1/4-(1/4*I)*{\sqrt {(}}3)+(-3/4+(3/4*I)*{\sqrt {(}}3))*coth(_{C}1+_{C}2*x+(3/4)*(-1/2+(1/2*I)*sqrt(3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
1
/
4
−
(
1
/
4
∗
I
)
∗
(
3
)
+
(
−
3
/
4
+
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
t
a
n
h
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
−
1
/
2
+
(
1
/
2
∗
I
)
∗
s
q
r
t
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(1/4-(1/4*I)*{\sqrt {(}}3)+(-3/4+(3/4*I)*{\sqrt {(}}3))*tanh(_{C}1+_{C}2*x+(3/4)*(-1/2+(1/2*I)*sqrt(3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
1
/
4
−
(
1
/
4
∗
I
)
∗
(
3
)
+
(
3
/
4
−
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
c
o
t
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
1
/
2
−
(
1
/
2
∗
I
)
∗
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(1/4-(1/4*I)*{\sqrt {(}}3)+(3/4-(3/4*I)*{\sqrt {(}}3))*cot(_{C}1+_{C}2*x+(3/4)*(1/2-(1/2*I)*{\sqrt {(}}3))*y/_{C}2)^{2})}
u
(
x
,
y
)
=
l
n
(
1
/
4
−
(
1
/
4
∗
I
)
∗
(
3
)
+
(
3
/
4
−
(
3
/
4
∗
I
)
∗
(
3
)
)
∗
t
a
n
(
C
1
+
C
2
∗
x
+
(
3
/
4
)
∗
(
1
/
2
−
(
1
/
2
∗
I
)
∗
(
3
)
)
∗
y
/
C
2
)
2
)
{\displaystyle u(x,y)=ln(1/4-(1/4*I)*{\sqrt {(}}3)+(3/4-(3/4*I)*{\sqrt {(}}3))*tan(_{C}1+_{C}2*x+(3/4)*(1/2-(1/2*I)*{\sqrt {(}}3))*y/_{C}2)^{2})}
w
(
x
,
y
)
=
(
8
/
3
)
∗
C
4
2
−
(
1
/
3
)
∗
R
o
o
t
O
f
(
64
∗
C
4
6
+
27
−
24
∗
C
4
4
∗
Z
−
6
∗
C
4
2
∗
Z
2
+
Z
3
)
−
4
∗
C
4
2
∗
J
a
c
o
b
i
D
N
(
C
2
+
(
1
/
2
)
∗
C
4
∗
x
+
C
4
∗
t
,
(
1
/
2
)
∗
R
o
o
t
O
f
(
−
R
o
o
t
O
f
(
64
∗
C
4
6
+
27
−
24
∗
C
4
4
∗
Z
−
6
∗
C
4
2
∗
Z
2
+
Z
3
)
+
Z
2
)
/
C
4
)
2
{\displaystyle w(x,y)=(8/3)*_{C}4^{2}-(1/3)*RootOf(64*_{C}4^{6}+27-24*_{C}4^{4}*_{Z}-6*_{C}4^{2}*_{Z}^{2}+_{Z}^{3})-4*_{C}4^{2}*JacobiDN(_{C}2+(1/2)*_{C}4*x+_{C}4*t,(1/2)*RootOf(-RootOf(64*_{C}4^{6}+27-24*_{C}4^{4}*_{Z}-6*_{C}4^{2}*_{Z}^{2}+_{Z}^{3})+_{Z}^{2})/_{C}4)^{2}}
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
Tritzeica equation traveling wave plot
^ G. Tzitz´eica, “Geometric infinitesimale-sur une nouvelle classes
de surfaces,”Comptes Rendus de l’Acad´emie des Sciences, vol. 144,pp. 1257–1259, 1907.
^ Andrei D. Polyanin,Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, SECOND EDITION p540-542 CRC PRESS
*谷超豪 《孤立子 理论中的达布变换 及其几何应用》 上海科学技术出版社
*阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
李志斌编著 《非线性数学物理方程的行波解》 科学出版社
王东明著 《消去法及其应用》 科学出版社 2002
*何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
Dongming Wang, Elimination Practice,Imperial College Press 2004
David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759