# 艾森斯坦級數

## 模群的艾森斯坦級數

${\displaystyle G_{2k}(\tau )=\sum _{(m,n)\neq (0,0)}{\frac {1}{(m+n\tau )^{2k}}}.}$

${\displaystyle G_{2k}\left({\frac {a\tau +b}{c\tau +d}}\right)=(c\tau +d)^{2k}G_{2k}(\tau )}$

## 遞迴關係

${\displaystyle d_{k}:=(2k+3)k!G_{2k+4}}$ ，遂有下述關係式：

${\displaystyle \sum _{k=0}^{n}{n \choose k}d_{k}d_{n-k}={\frac {2n+9}{3n+6}}d_{n+2}}$

${\displaystyle \wp (z)={\frac {1}{z^{2}}}+z^{2}\sum _{k=0}^{\infty }{\frac {d_{k}z^{2k}}{k!}}={\frac {1}{z^{2}}}+\sum _{k=1}^{\infty }(2k+1)G_{2k+2}z^{2k}}$

## 傅立葉展開

${\displaystyle q=e^{2\pi i\tau }}$ 。由於艾森斯坦級數是模群的模形式，故有傅立葉展開式

${\displaystyle G_{2k}(\tau )=2\zeta (2k)\left(1+c_{2k}\sum _{n=1}^{\infty }\sigma _{2k-1}(n)q^{n}\right)}$

${\displaystyle c_{2k}={\frac {(2\pi i)^{2k}}{(2k-1)!\zeta (2k)}}={\frac {-4k}{B_{2k}}}}$

${\displaystyle G_{4}(\tau )={\frac {\pi ^{4}}{45}}\left[1+240\sum _{n=1}^{\infty }\sigma _{3}(n)q^{n}\right]}$
${\displaystyle G_{6}(\tau )={\frac {2\pi ^{6}}{945}}\left[1-504\sum _{n=1}^{\infty }\sigma _{5}(n)q^{n}\right]}$

${\displaystyle |q|<1}$ ，對 ${\displaystyle q}$  之和亦可化成蘭伯特級數

${\displaystyle \sum _{n=1}^{\infty }q^{n}\sigma _{a}(n)=\sum _{n=1}^{\infty }{\frac {n^{a}q^{n}}{1-q^{n}}}}$

${\displaystyle E_{2k}:={\frac {G_{2k}}{2\zeta (2k)}}=1-{\frac {4k}{B_{2k}}}\sum _{n=1}^{\infty }\sigma _{2k-1}(n)q^{n}}$

### 拉馬努金公式

${\displaystyle L(q)=1-24\sum _{n=1}^{\infty }{\frac {nq^{n}}{1-q^{n}}}=E_{2}(\tau )}$
${\displaystyle M(q)=1+240\sum _{n=1}^{\infty }{\frac {n^{3}q^{n}}{1-q^{n}}}=E_{4}(\tau )}$
${\displaystyle N(q)=1-504\sum _{n=1}^{\infty }{\frac {n^{5}q^{n}}{1-q^{n}}}=E_{6}(\tau )}$

${\displaystyle q{\frac {dL}{dq}}={\frac {L^{2}-M}{12}}}$
${\displaystyle q{\frac {dM}{dq}}={\frac {LM-N}{3}}}$
${\displaystyle q{\frac {dN}{dq}}={\frac {LN-M^{2}}{2}}}$

## 文獻

• Naum Illyich Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2
• Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York ISBN 0-387-97127-0
• Henryk Iwaniec, Spectral Methods of Automorphic Forms, Second Edition, (2002) (Volume 53 in Graduate Studies in Mathematics), America Mathematical Society, Providence, RI ISBN 0-8218-3160-7 (See chapter 3)
• Jean-Pierre Serre, A course in arithmetic. Translated from the French. Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973.