雷乔杜里方程
在广义相对论中,雷乔杜里方程(英語:Raychaudhuri equation),或朗道–雷乔杜里方程(英語:Landau–Raychaudhuri equation)[1]是描述邻近物质运动的基本方程。
它不仅是彭罗斯-霍金奇点定理和广义相对论的精确解研究的基本引理,还具有独特之处,即它指出引力应该是广义相对论中任意质量-能量之间的普遍存在的吸引力,正如在牛顿引力理论中那样。
这一方程由印度物理学家阿马尔·库马尔·雷乔杜里[2]和苏联物理学家列夫·朗道各自独立发现。[3]
数学表述
编辑考虑一个类时的单位矢量场 (可理解为不相交的世界线的汇), 雷乔杜里方程可写为
式中
是剪切张量
和涡度张量
的二次不变量。这里
是扩张张量, 是它的迹,称为扩张标量。
是正交于 的超平面上的投影张量。另外,圆点表示对固有时的微分。潮汐张量 的迹可写为
- +1
这个量有时也称为雷乔杜里标量。
参见
编辑注释
编辑- ^ Spacetime as a deformable solid, M. O. Tahim, R. R. Landim, and C. A. S. Almeida, .
- ^ Dadhich, Naresh. Amal Kumar Raychaudhuri (1923–2005) (PDF). Current Science. August 2005, 89: 569–570 [2018-10-29]. (原始内容存档 (PDF)于2020-01-03).
- ^ The large scale structure of space-time by Stephen W. Hawking and G. F. R. Ellis, Cambridge University Press, 1973, p. 84, ISBN 0-521-09906-4.
参考资料
编辑- Poisson, Eric. A Relativist's Toolkit: The Mathematics of Black Hole Mechanics. Cambridge: Cambridge University Press. 2004. ISBN 0-521-83091-5. See chapter 2 for an excellent discussion of Raychaudhuri's equation for both timelike and null geodesics, as well as the focusing theorem.
- Carroll, Sean M. Spacetime and Geometry: An Introduction to General Relativity. San Francisco: Addison-Wesley. 2004. ISBN 0-8053-8732-3. See appendix F.
- Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Hertl, Eduard. Exact Solutions to Einstein's Field Equations (2nd ed.). Cambridge: Cambridge University Press. 2003. ISBN 0-521-46136-7. See chapter 6 for a very detailed introduction to geodesic congruences, including the general form of Raychaudhuri's equation.
- Hawking, Stephen & Ellis, G. F. R. The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press. 1973. ISBN 0-521-09906-4. See section 4.1 for a discussion of the general form of Raychaudhuri's equation.
- Raychaudhuri, A. K. Relativistic cosmology I.. Phys. Rev. 1955, 98 (4): 1123. Bibcode:1955PhRv...98.1123R. doi:10.1103/PhysRev.98.1123. Raychaudhuri's paper introducing his equation.
- Dasgupta, Anirvan; Nandan, Hemwati & Kar, Sayan. Kinematics of geodesic flows in stringy black hole backgrounds. Phys. Rev. D. 2009, 79 (12): 124004. Bibcode:2009PhRvD..79l4004D. arXiv:0809.3074 . doi:10.1103/PhysRevD.79.124004. See section IV for derivation of the general form of Raychaudhuri equations for three kinematical quantities (namely expansion scalar, shear and rotation).
- Kar, Sayan & SenGupta, Soumitra. The Raychaudhuri equations: A Brief review. Pramana. 2007, 69: 49. Bibcode:2007Prama..69...49K. arXiv:gr-qc/0611123 . doi:10.1007/s12043-007-0110-9. See for a review on Raychaudhuri equations.
外部链接
编辑- The Meaning of Einstein's Field Equation (页面存档备份,存于互联网档案馆) by John C. Baez and Emory F. Bunn. Raychaudhuri's equation takes center stage in this well known (and highly recommended) semi-technical exposition of what Einstein's equation says.