雷諾方程 (英語:Reynolds equation )是流體 潤滑理論 中的基本方程,描述流體薄膜的壓力 分佈,可由納維-斯托克斯方程 導出。該方程由英國物理學家奧斯鮑恩·雷諾 於1886年提出。[ 1]
流體動力軸承演示裝置
雷諾方程的導出建立在以下假設的基礎之上:
流體為牛頓流體
黏性力遠大於慣性力,即雷諾數 十分小
體積力可以忽略
壓力沿厚度方向基本不變(
∂
p
∂
z
=
0
{\displaystyle {\frac {\partial p}{\partial z}}=0}
)
流體膜厚度遠小於寬度與長度(
h
<<
l
{\displaystyle h<<l}
及
h
<<
w
{\displaystyle h<<w}
)
雷諾方程的表達式為:[ 2] [ 3]
∂
∂
x
(
ρ
h
3
12
μ
∂
p
∂
x
)
+
∂
∂
y
(
ρ
h
3
12
μ
∂
p
∂
y
)
=
∂
∂
x
(
ρ
h
(
u
a
+
u
b
)
2
)
+
∂
∂
y
(
ρ
h
(
v
a
+
v
b
)
2
)
+
ρ
(
w
a
−
w
b
)
−
ρ
u
a
∂
h
∂
x
−
ρ
v
a
∂
h
∂
y
+
h
∂
ρ
∂
t
{\displaystyle {\frac {\partial }{\partial x}}\left({\frac {\rho h^{3}}{12\mu }}{\frac {\partial p}{\partial x}}\right)+{\frac {\partial }{\partial y}}\left({\frac {\rho h^{3}}{12\mu }}{\frac {\partial p}{\partial y}}\right)={\frac {\partial }{\partial x}}\left({\frac {\rho h\left(u_{a}+u_{b}\right)}{2}}\right)+{\frac {\partial }{\partial y}}\left({\frac {\rho h\left(v_{a}+v_{b}\right)}{2}}\right)+\rho \left(w_{a}-w_{b}\right)-\rho u_{a}{\frac {\partial h}{\partial x}}-\rho v_{a}{\frac {\partial h}{\partial y}}+h{\frac {\partial \rho }{\partial t}}}
其中
p
{\displaystyle p}
為流體膜壓力,
x
{\displaystyle x}
與
y
{\displaystyle y}
為流體軸承寬度與長度方向坐標,
z
{\displaystyle z}
為流體膜厚度方向坐標,
h
{\displaystyle h}
為流體膜厚度,
μ
{\displaystyle \mu }
為流體黏度 ,
ρ
{\displaystyle \rho }
為流體密度 ,
u
,
v
,
w
{\displaystyle u,v,w}
分別為
x
,
y
,
z
{\displaystyle x,y,z}
方向的邊界速度,
a
,
b
{\displaystyle a,b}
則分別表示上、下邊界。
^ Reynolds, O. 1886. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil. Philosophical Transactions of the Royal Society of London .[1]
^ Fundamentals of Fluid Film Lubrication. Hamrock, B., Schmid, S., Jacobson. B. 2nd Edition. 2004. ISBN 0-8247-5371-2
^ Fluid Film Lubrication. Szeri, A. 2nd Edition. 2010. ISBN 0521898234 .