視寧度天文學中是指由於地球大氣層中的湍流導致的天體影像的劣化,這種劣化可能會以模糊、閃爍或可變扭曲的形式顯現出來。這種效應的起源是從物體到探測器的光路上光學折射率的快速變化。在用望遠鏡進行天文觀測時,視寧度是角分辨率的一個主要限制限制因素,否則也會受到望遠鏡孔徑大小的繞射限制。如今,許多科學用的大型地面望遠鏡都包括調適光學系統,以克服視寧度的障礙。

說明來自遙遠恆星的光波陣面如何被大氣中的湍流混合層擾動的示意圖。繪製的波陣面的垂直尺度被高度誇大了。

視寧度强度通常由恆星(「視覺盤」)的長曝光影像的角直徑或弗萊德參數英语Fried parameterFried「r0」來表示。視覺盤的直徑是其光强度的半峰全寬。在這種情況下,幾十毫秒的曝光時間可以被認為是「長」的。弗萊德參數描述了一個假想望遠鏡孔徑的大小,其繞射極限角分辨率等於視覺極限分辨率。視覺盤的大小和弗萊德參數兩者都取決於光學波長,但通常將其指定為500納米。

小於0.4弧秒的視覺盤或大於30cm的弗萊德參數可以被認為是極好的視寧度。最佳條件通常出現在小島上的高海拔天文台,如莫纳克亚天文台拉帕爾馬

影響

编辑
 
通過大氣觀察看到的雙星(在本例中為牧夫座ζ)的典型短曝光負片影像。每顆星都應顯示為單個 空氣模式,但大氣層導致兩顆恆星的圖像分裂成兩種「斑點」模式(一種模式在左上方,另一種在右下方)。由於所用相機的圖元大小較粗,因此在此圖像中很難辨認斑點(請參閱下面的模擬圖像以獲取更清晰的範例)。斑點快速移動,因此每顆恆星在長時間曝光圖像中都顯示為單個模糊斑點(稱為「視盤」)。所使用的望遠鏡直徑約為7r0(參見下文r0的定義,以及通過7r0望遠鏡的模擬圖像示例)。
夜空中最亮的星星天狼星視星等 = -1,1)在頂點之前不久的傍晚在南子午線上閃爍,高度為地平線以上20度。在29秒內,天狼星從左到右移動了7.5弧分的弧線。

視寧度有幾種效果:

  1. 它導致點源英语Point source(如恆星)的圖像,在沒有大氣湍流的情況下,這些圖像將是穩定的由繞射產生的空氣圖案,分解成散斑圖案,這些圖案隨時間快速變化(產生的斑點圖像可以使用散斑成像進行處理)
  2. 這些變化的斑點圖案的長時間曝光圖像會導致點源的圖像模糊,稱為「視盤」
  3. 恆星的亮度似乎在稱為閃爍(scintillation)或閃爍(twinkling)的過程中波動
  4. 視寧度導致天文干涉儀英语Astronomical interferometer中的條紋快速移動
  5. 通過大氣看到的大氣分佈(CN2配置檔如下所述)導致自適應光學系統中的圖像品質越差,參考星的位置離得越遠,圖像品質就越差

視寧度的影響間接導致了人們相信存在火星上的運河[來源請求]。在觀察像火星這樣的明亮物體時,偶爾會有一個靜止斑塊的空氣會出現在行星的前方,從而產生短暫的清晰時刻。在使用感光耦合元件之前,除了讓觀察者記住圖像並稍後繪製圖像外,沒有辦法在短暫的瞬間記錄行星的圖像。這樣做的效果是,行星的圖像依賴於觀察者的記憶和先入之見,這導致了人們對火星具有線性特徵的信念。

大氣對天文觀測的影響在整個可見光和近紅外波段的品質上是相似的。在大型望遠鏡中,長曝光圖像解析度通常在較長波長下略高,而舞蹈散斑圖案變化的時間尺度(t0 - 見下文)要低得多。

措施

编辑

關於天文台的視寧度情況,有三種常見的描述:

  • 視盤的半峰全寬 (FWHM)
  • 「r0」(湍流大氣中典型均勻空氣「塊」的大小[1])和「t0」(湍流變化變得顯著的時間尺度)
  • CN2輪廓

下面的章節將介紹這些內容:

視盤的半峰全寬(FWHM)

编辑

如果沒有大氣層,一顆恆星在由繞射確定的望遠鏡圖像中將具有表觀大小,即「艾里斑」,並且與望遠鏡的口徑成反比。然而,當光線進入地球大氣層時,不同的溫度層和不同的風速會使光波發生扭曲,從而導致恆星圖像的畸變。大氣的影響可以建模為湍流運動的空氣旋轉單元。在大多數天文台,湍流僅在尺度大於「r0時才顯著(見下文 – 在可見光波長範圍的最佳情況下,參數「r 0」為10–20 cm)。這限制了地基望遠鏡的解析度大致與天基10-20 cm望遠鏡給出的解析度相同。

畸變以高速率變化,通常超過每秒100次。在一張典型的恆星天文影像中,曝光時間為幾秒甚至幾分鐘,不同的畸變平均為一個被稱為「視盤」的填充盤。視盤的直徑,通常被定義為半峰全寬(FWHM),是天文觀測條件的度量。

根據這個定義,視寧度總是一個可變的量,因地而異,因夜而異,甚至在分鐘的尺度上也是可變的。天文學家經常談論平均視盤直徑較低的「好」夜晚,以及視盤直徑如此之高,以至於所有觀測都毫無價值的「壞」夜晚。

視盤的半峰全寬(FWHM)(或簡稱為「seeing」)通常以弧秒為單位進行量測,縮寫為符號(”)。對於一般的天文站址來說,1.0”的視野是很好的;城市的環境通常要糟糕得多。視寧度好的夜晚往往是晴朗、寒冷、沒有陣風的夜晚。暖空氣上升(對流),使視寧度下降,風和雲也是如此。在最好的高海拔山頂,風帶來了以前從未與地面接觸過的穩定空氣,有時可以提供高達0.4”的視寧度。

r0t0

编辑

天文台的視寧度條件可以方便地用參數「r0」和「t0」來描述。

對於直徑小於「r0」的望遠鏡,長曝光影像的分辨率主要由繞射和艾里斑的大小决定,因此與望遠鏡直徑成反比。

對於直徑大於「r0」的望遠鏡,影像分辨率主要由大氣决定,與望遠鏡直徑無關,保持恆定在直徑等於「r0」的望遠鏡給出的值。「r0」也對應於湍流變得顯著的長度尺度(在良好的天文台,可見光波長為10-20 cm),「t00」對應於湍流變化變得顯著的時間尺度。「r0」决定了調適光學系統中所需致動器的間距,「t0」决定了補償大氣影響所需的校正速度。

參數「r0」和「t0」隨天文成像所用的波長而變化,允許使用大型望遠鏡在較長波長下進行稍高解析度的成像。

視寧度參數「r0」通常以大衛·弗萊德之名命名,稱為弗萊德參數。大氣時間常數「t0」通常以達里爾・格林伍德英语Darryl Greenwood之名命名,稱為格林伍德時間常數

r0t0的數學描述

编辑

參考資料

编辑

Much of the above text is taken (with permission) from Lucky Exposures: Diffraction limited astronomical imaging through the atmosphere, by Robert Nigel Tubbs.

  1. ^ Chromey, Frederick R. To measure the sky : an introduction to observational astronomy 1. publ. Cambridge: Cambridge University Press. 2010: 140. ISBN 9780521763868. 

外部連結

编辑