打开主菜单
The arc length functional has as its domain the vector space of rectifiable curves (a subspace of ), and outputs a real scalar. This is an example of a non-linear functional.
The Riemann integral is a linear functional on the vector space of Riemann-integrable functions from to .


泛函(functional)指以函數构成的向量空间定義域,实数为值域为的「函數」,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。泛函的应用可以追溯到变分法,其中通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。

是由一些函数構成的集合。所谓上的泛函就是上的一个实值函数。称为该泛函的容许函数集

函数的变换某种程度上是更一般的概念,参见算子

目录

例子编辑

设在 xOy 平面上有一簇曲线  , 其长度为 

显然, 不同,  也不同,即 的数值依赖于整个函数  而改变。   和函数   之间的这种依赖关系就称为泛函关系。

性质编辑

對偶性编辑

觀察映射

 

是一個函數,在這裡, 是函數f的自变量。

同時,將函數映射至一個點的函數值

 

是一個泛函,在此 是一個參數

只要   是一個從向量空間至一個佈於實數的的線性轉換,上述的線性映射彼此對偶,那麼在泛函分析上,這兩者都稱作線性泛函。

参见编辑

参考资料编辑