打开主菜单

玻璃

可作为建筑材料的材质
玻璃可以造成不同的形狀和顏色。這是以玻璃製成的藝術品。
玻璃和ITO玻璃的吸收光谱

玻璃是一種呈玻璃態无定形体[1],熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。

玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是鈉鈣玻璃英语soda-lime glass,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫

因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三稜鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃

玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括花瓶瓶子玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。

在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力聚碳酸酯PET)的重量較輕,可以取代傳統的矽玻璃。

玻璃在中國古代亦稱琉璃[來源請求],日語漢字以硝子代表。

目录

成份编辑

普通玻璃的成分主要是二氧化硅(SiO2,即石英的主要成分)。而純硅土熔點為攝氏2000度,因此製造玻璃時一般會加入碳酸钠(Na2CO3 ,即蘇打)與碳酸鉀(Potash,K2CO3钾碱),這樣硅土熔點將降至攝氏1000度左右。但是碳酸钠會使玻璃溶於中,因此通常還要加入適量的氧化钙(CaO)使玻璃不溶於水。

可見光透明是玻璃最大的特點,一般的玻璃因為製造時加進了碳酸钠,所以對波長短於400nm紫外線並不透明。如果要讓紫外線穿透,玻璃必須以純正的二氧化硅製造,這種玻璃成本較高,一般被稱為石英玻璃。純玻璃對紅外線亦是透明的,可以造成數公里長,作通訊用途的玻璃纖維

常見的玻璃通常亦會加入其他成份。 例如看起來十分閃爍曜眼的水晶玻璃(鉛玻璃)是在玻璃內加入,令玻璃的折射係數增加,產生更為眩目的折射。 至於派熱克斯玻璃(Pyrex),則是加入了,以改變玻璃的熱及電性質。 加入亦可增加折射指數。 製造光學鏡頭的玻璃則是加入氧化物來大幅增加折射指數。 倘若要玻璃吸收紅外線則可以加入鐵,放映機內便有這種隔熱的玻璃。 玻璃加入則會吸收紫外線。

在玻璃中加入各種金屬和金屬氧化物亦可以改變玻璃的顏色。 例如 少量可以改變玻璃內因鐵造成的淡綠色,多一點錳則可以造成淡紫色的玻璃。亦有類似的效果。 少量可以造成藍色的玻璃。 的氧化物及氧化物可造成不透明的白色玻璃,這種玻璃好像是白色的陶瓷。 銅的氧化物會造成青綠色的玻璃。以金屬銅則會造成深紅色、不透明的玻璃,看起來好像是紅寶石可以造成藍色、深紫色、甚至是黑色的玻璃。 則可以造成棕黃色。微量的(約0.001%)造成的玻璃是非常鮮明,像是紅寶石的顏色。 (0.1%至2%)造成的玻璃是螢火黃或綠色。 化合物可以造成橙色至黃色的玻璃。改變玻璃的溫度亦會改變這些化合物造成的顏色,但當中的化學原理相當複雜,至今仍然未被完全明解。

有時在火山熔岩中會出現天然的玻璃,稱黑曜石火山玻璃[2]。黑曜石可以用來造成簡單的尖刀。

歷史编辑

据信人類自石器時代已使用天然的火山玻璃[3]。公元前二千年左右,古埃及已有記載使用玻璃作器皿。西元前200年,巴比倫發明了玻璃吹管製玻璃的方法,接著這個方法傳入羅馬,歐洲在公元一世紀左右羅馬的波特蘭瓶即是玻璃浮雕作品。到了十一世紀德國發明製造平面玻璃的技術。先把玻璃吹成狀,然後造成圓筒型。在玻璃仍熱時切開,然後攤平。這種技術在十三世紀威尼斯得到了進一步改良。十四世紀歐洲的玻璃製造中心是威尼斯,很多以玻璃造成的餐具、器皿等都是由威尼斯製作。日後歐洲很多玻璃工匠都是師承威尼斯。1827年發明的玻璃壓印機器,開展了大規模生產廉價玻璃器具的道路。

玻璃上有時會以酸或其他腐蝕物料刻上藝術圖案。傳統的造法是在吹或鑄玻璃的時候由工匠刻作。後來在1920年發明了可以在模具上加上雕刻的辦法,亦可以使用不同顏色的玻璃,於是在1930年以後,大量生產的廉價玻璃器具逐漸出現。

中國西周時亦已開始製造玻璃。在西周時期的古墓中曾發現玻璃管、玻璃珠等物品。南北朝以前,中國人多以琉璃稱以火燒成,玻璃質透明物。宋朝時則開始稱之為玻璃。到明清時,習慣以琉璃稱呼低溫燒成,不透明的陶瓷。很多當時的「琉璃」嚴格上來說,並不屬於現代所說的「玻璃」。

中國古典作品中亦有提及「玻璃」一詞。宋朝杨万里的《稚子弄冰》提及了玻璃:

稚子金盆脱晓冰,彩丝穿取当银铮。

敲成玉磬穿林响,忽作玻璃碎地声。

明朝吴承恩著《西遊記》中提及琉璃。第一百回(徑回東土 五聖成真)中寫道:“沙悟淨,汝本是捲簾大將。先因蟠桃會上打碎琉璃盏,貶汝下界,汝落於流沙河,傷生吃人造孽。”

結構编辑

未解決的物理學問題液態固態物質是怎樣玻璃化轉變玻璃態物質?是甚麼物理過程給出了玻璃的一般物理性質[4]


「固態物理中最深及最有趣的未解問題,可能就是玻璃及玻璃轉化的本質。」菲利普·安德森[5]
 

如同其他非晶形體一樣,玻璃的結構沒有任何大範圍的平移對稱性英语translational symmetry,不過因為化學鍵的特性,玻璃會有小範圍的有序性,局部的原子會形成多面體[6]

 
二維空間中的玻璃二氧化矽的非晶形體結構,沒有大範圍的對稱性,但因為矽原子和氧原子有正四面體的結構,有區部的對稱性

由過冷液體變成玻璃编辑

在物理學中,玻璃(或玻璃態固體)的標準定義是由快速熔淬形成的固體[7][8][9][10][11]。不過玻璃一詞一般是指有玻璃轉化溫度Tg無定形體。若冷卻速度比其結晶速度要快,原子不會形成結晶,過冷液體的不規則原子組態也就成為低於玻璃轉化溫度Tg後的原子組態。材料在淬火時變成玻璃態的傾向稱為玻璃形成能力(glass-forming ability),可以用剛度理論英语Rigidity theory (physics)預測[12]。一般而言,玻璃態結構相較於晶體結構,只是一個介穩狀態英语metastable,雖然有些情形下(例如Atactic英语Atactic聚合物),不存在類似無定形體的晶體結構[13]

因為在液體變為玻璃態的過程中,沒有出現使體積熱力學狀態不連續變化的一階相變,因此有些研究者認為玻璃可視為是一種液體[14][15][16],結晶學通稱為非晶質。不過玻璃轉化可以視為是二相相變,像熱膨脹係數熱容量等內含熱力學變數出現不連續變化[17]。此外,描述相變化的平衡理論在玻璃態無法完全適用,因此玻璃轉化無法歸類為傳統固體平衡相變中的任何一種[10][11]

成型方法(平板玻璃)编辑

引上法平板玻璃编辑

引上法也稱為弗克法英语Fourcault process[18],是在玻璃熔解後直接往上拉引,使玻璃在垂直方向冷卻凝固。

平拉法平板玻璃编辑

平拉法也稱為科爾伯恩法[18](Colburn method),是在玻璃熔解後先往上拉引,再經過轉向輥使玻璃由垂直方向轉換為水平方向,使玻璃在水平方向冷卻凝固,其好處是可以穩定生產3mm以下的薄玻璃[19],例如顯示器玻璃等。

浮法玻璃编辑

浮法玻璃也稱為退火玻璃,是將玻璃熔液倒進一缸高温融化的錫內,玻璃浮上錫面後自然形成兩邊平滑的表面,慢慢冷卻及成長帶狀後離開錫缸。

浮法玻璃厚度均匀、上下表面平整平行,同时具有劳动生产率高及利于管理等优势,因此成为玻璃制造方式的主流。不過其缺點是破裂時,會成為大塊鋒利的碎片,在窗戶上被禁止使用。[來源請求]

玻璃種類编辑

強化玻璃编辑

強化玻璃亦被稱為「鋼化玻璃」,是由浮法玻璃經過快速冷卻熱處理而製成,強度較浮法玻璃高4至6倍,且破裂時只會形成小的碎片,不會有大塊鋒利的碎片。但在強化後,強化玻璃上有任何損壞或裂痕,都會造成整片玻璃的碎裂。

夾層玻璃编辑

夾層玻璃亦被稱為「安全玻璃」、「夹膠玻璃」或「膠合玻璃」,是在二片或多片浮法玻璃中,加入聚乙烯醇縮丁醛(Poly(vinyl butyral), PVB)或乙烯/醋酸乙烯酯共聚物(ethylene-vinyl acetate copolymer, EVA)等膠合材質。早期夾層玻璃亦有使用液體狀態的日光膠用作膠合材料;近年以來,美國杜邦公司推出的SGP (Sentry Guard Plus Interlayer)材料在市場上逐漸嶄露頭角,具有比PVB更好的抗衝擊性能。

夾層玻璃廣泛應用於建築玻璃幕牆、玻璃隔斷、玻璃欄杆、汽車的擋風玻璃防彈玻璃等場合。銀行櫃檯所使用的夾層玻璃,在浮法玻璃之間,還增加了有機玻璃,以增強抗暴性能。

调光玻璃编辑

 
機場用的调光玻璃

调光玻璃在市場上也被稱為「智能玻璃」、「智慧玻璃」。根據起調光效果的功能材料分類,可分為聚合物分散液晶型(Polymer Dispersed Liquid Crystals, PDLC)、電致變色型(Electrochromic materials, EC)和分散粒子型(suspended particle device, SPD),其中聚合物分散液晶型調光玻璃是目前應用最多的一種調光玻璃,也常被稱為「電控液晶玻璃」。

聚合物分散液晶型調光玻璃中包含有一層10~20微米厚度的聚合物分散液晶材料層,並通過交流電對其驅動。当关闭电源时,分散在多孔聚合物中的液晶分子会呈现不规则散布状态,使射入的光线發生強烈的散射,此時調光玻璃呈現毛玻璃狀態,霧度(Haze)很高;通电后,液晶分子則呈现整齐排列,穿過其中的光线基本不發生散射,保持原有的傳播方向透過玻璃,此时調光玻璃呈现透明状态,透明度(clarity)很高。一般來說,兩種狀態之間的切換非常迅速,並且在額定工作電壓以內,玻璃的霧度/透明度可以通過改變電壓幅值進行調節。早年由于制造成本居高不下,導致聚合物分散液晶型調光玻璃大多僅能面向高端市場,用作隱私保護。如在高檔休閒及公務场所,用於隐私保护领域;部份嬰兒室或月子中心也使用調光玻璃,探嬰時將電源打開,玻璃即由乳白色霧化狀態轉變為透明狀態。近年來,由於中國大陸廠商的產業技術進步,聚合物分散液晶型調光玻璃的市場售價逐年下降,市場銷量得到快速增長,該型調光玻璃已開始逐漸向中端市場普及,應用方案也從單一的隱私保護,發展為隱私保護與畫面投影並舉。目前,其常見於賓館酒店的衛浴玻璃隔斷、辦公場所玻璃隔斷、玻璃幕牆商廣投影、汽車後擋風玻璃商廣投影等場合。由於其斷電時會阻隔視線,因此在大多數國家並不被允許用作汽車等交通工具的擋風玻璃,但可以用於房車、高鐵等車輛的非關鍵部位。中國大陸高鐵車輛中部分採用了該型調光玻璃,安裝在商務艙與駕駛室之間,以此為商務艙旅客提供更好的視野(但目前限於安保要求,這些玻璃在車輛行駛過程中並未被允許開啟至透明狀態)。

電致變色型調光玻璃中包含有一層電致變色材料。所使用的電致變色材料,多為基於氧化鎢的無機材料類型,目前亦有公司正在開發有機材料類型的電致變色材料。其變色原理,是通過輸入電流來改變材料中離子的價態或分子的氧化態,從而改變材料的顏色。因此該型玻璃使用直流電驅動,顏色變深或變淺,直流電流向相反。該型玻璃在顏色變化前後,透明狀態並不隨之改變,即使顏色非常深,玻璃仍然是透明的。另外,該型玻璃改變顏色需要持續通電幾秒至幾分鐘時間,但維持任何一個狀態,均不需要通電來維持,因此具有多穩態特性。SAGE公司最早將其商業化,並成功實施包括拉羅謝爾大學(l’Université de La Rochelle)圖書館頂棚、基梅爾表演藝術中心(Kimmel Center For The Performing Arts)頂棚及外立面等諸多成功案例。由於電致變色材料不能長時間接觸水汽和氧氣,因此該型玻璃必須在無水無氧條件下裁切並完成邊緣隔絕處理,因此目前電致變色型調光玻璃的市場售價仍然較高,市場推廣較慢。

分散粒子型調光玻璃中包含有一層分散粒子功能層。該層材料中,具有電荷極性的棒狀微粒懸浮分散在微膠囊內的液體材料中。未施加驅動電壓時,無規分散的棒狀粒子可充分吸收射入玻璃的可見光,因此玻璃呈深色;而當施加交流電壓時,微粒被取向至垂直於玻璃表面的方向,較少吸收透過光線,因此玻璃呈淺色至接近無色狀態。該型調光玻璃的核心技術最早由Research Frontiers Inc.開發並持有,該公司通過產品銷售許可證的方式,向包括日立化成、板硝子皮爾金頓等公司提供經營授權。由於其對電壓的響應速度快、可變色、耐候性能較好、成本適中等特點,該型調光膜被汽車廠商應用於高端汽車的天窗,如邁巴赫、雷克薩斯、梅賽德斯-奔馳等品牌,使用該型調光玻璃做為天窗。由於技術專利高度集中於一家公司,而且技術開發難度較高,因此該型調光玻璃目前的價格仍然較高。

自洁玻璃编辑

自洁玻璃英语Self-cleaning glass主要應用在建築物和汽車上。玻璃外層會塗上約50納米厚的氧化物,在紫外光下會催化玻璃上的有機物分解。這可以把分解的有機物沖走且不留水跡,達到自潔效果。

镭射玻璃编辑

也称「全息玻璃」或「激光玻璃」,這種玻璃是把激光全息图样与玻璃相结合。這是应用于家居设计。

雕花玻璃编辑

一面平滑,一面用機械壓鑄的花型玻璃,常用在室內設計的造型玻璃牆或隔屏造型。

鉛玻璃编辑

鉛玻璃,用於防止X光室或其他處理、儲存放射性物質場所之放射線外洩,而採用的特殊玻璃。

夜光玻璃编辑

夜光玻璃可在夜里產生独特的荧光效果。在夜晚可起到指引方向或充当光源的作用。這用于室内设计。

鐵絲網玻璃编辑

分成壓花或磨平鐵絲網玻璃兩種,鐵絲網多用直徑0.4mm以上的龜甲形狀或方格、斜方格形狀,一般可用於防火門窗,因為在玻璃中嵌入鐵絲網,遇上火災時雖然玻璃破裂,但鐵絲網仍可留在原來位置,保護建築物內部不受火災侵害。

玻璃磚编辑

製造過程跟雙層玻璃相似,以兩片後約5mm-6mm的平板壓花玻璃組合成中空的玻璃磚,特性與雙層玻璃相似,也可當成砌疊的材料,一般應用在建築物的牆壁採光、隔屏或隔間牆。分成普通玻璃磚跟稜鏡玻璃磚兩種。普通玻璃磚多用於牆壁開口處的砌疊,有防熱隔音的效果,但不能承擔載重。而稜鏡玻璃磚常安裝於地板作為下層樓採光的天井之用,常見的形狀有圓形跟方形兩種,光線的分佈有擴散型跟分光型兩種。

玻璃磚的施工方式分成乾式跟溼式兩種,乾式施工法是由木工先將木作邊框建起,將玻璃磚依序疊砌,並於上下週邊空隙塞入夾板來固定玻璃磚,待調整好平整度後將上下左右的邊縫填入矽利康並修飾平順。而溼式施工法則是水泥、砂跟石灰加入防水劑攪拌,用類似空心磚的疊砌方式,再以白水泥砂漿做勾縫整修,中間以鐵絲網補強。

参见编辑

參考資料编辑

  1. 电子材料导论. 清华大学出版社有限公司. 2001: 249–. ISBN 978-7-302-04396-6. 
  2. 史前研究. 西安半坡博物馆. 1988. 
  3. 歷史記錄中的玻璃
  4. Kenneth Chang, The Nature of Glass Remains Anything but Clear, The New York Times, 2008-07-29 
  5. P. W. Anderson. Through the Glass Lightly. Science. 1995, 267 (5204): 1615. doi:10.1126/science.267.5204.1615-e. 
  6. P. S. Salmon. Order within disorder. Nature Materials. 2002, 1 (2): 87–8. PMID 12618817. doi:10.1038/nmat737. 
  7. ASTM definition of glass from 1945; also: DIN 1259, Glas – Begriffe für Glasarten und Glasgruppen, September 1986
  8. Zallen, R. The Physics of Amorphous Solids. New York: John Wiley. 1983. ISBN 0-471-01968-2. 
  9. Cusack, N. E. The physics of structurally disordered matter: an introduction. Adam Hilger in association with the University of Sussex press. 1987. ISBN 0-85274-829-9. 
  10. 10.0 10.1 Elliot, S. R. Physics of Amorphous Materials. Longman group ltd. 1984. 
  11. 11.0 11.1 Horst Scholze. Glass – Nature, Structure, and Properties. Springer. 1991. ISBN 0-387-97396-6. 
  12. J.C. Phillips. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. Journal of Non-Crystalline Solids. 1979, 34 (2): 153. Bibcode:1979JNCS...34..153P. doi:10.1016/0022-3093(79)90033-4. 
  13. J. C. W. Folmer and Stefan Franzen. Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory. Journal of Chemical Education. 2003, 80 (7): 813. Bibcode:2003JChEd..80..813F. doi:10.1021/ed080p813. 
  14. Philip Gibbs. Is glass liquid or solid?. [2007-03-21]. 
  15. "Philip Gibbs" Glass Worldwide, (May/June 2007), pp. 14–18
  16. Jim Loy. Glass Is A Liquid?. [2007-03-21]. (原始内容存档于2007-03-14). 
  17. M. I. Ojovan, W. E. Lee. Topologically disordered systems at the glass transition. J. Phys.: Condensed Matter. 2006, 18 (50): 11507–11520. Bibcode:2006JPCM...1811507O. doi:10.1088/0953-8984/18/50/007. 
  18. 18.0 18.1 杨静. 建筑材料与人居环境. 清华大学出版社有限公司. 2001: 50–. ISBN 978-7-302-04503-8. 
  19. 平拉法