位力定理
此條目可参照英語維基百科相應條目来扩充。 |
位力定理(英語:Virial theorem,又稱维里定理、均功定理)是力學中描述穩定的多自由度孤立體系的總動能和總勢能時間平均之間的數學關係。考慮一個有N個質點的體系,其數學表達式爲:
其中:角括號表示對時間取平均,是系统内部的总动能,是第k個質點所受的力,是第k個質點的位置向量;等式右邊稱作均位力積(英語:virial,簡稱位力),反映體系內相互作用強度。英語virial一詞由德國物理學家魯道夫·克勞修斯於1870年根據拉丁語單詞vīs(意爲力、能量)命名。[1]
特別地,若系統内任何粒子兩兩之間的力來自與粒子間距離的次冪成正比的勢能(其中為常數),則定理簡化為:
即:體系的總動能2倍等於總勢能的n倍。對於引力勢能,這裏的。
位力定理的一個意義在於,它允許計算平均總動能,即便是對於那些無法精確解的非常複雜的系統,例如在統計力學中考慮的那些;根據能量均分定理,該平均總動能與系統溫度有關。然而,維里定理不依賴於溫度的概念,甚至適用於不處於熱平衡的系統。維里定理已以各種方式推廣,特別是張量形式。
歷史编辑
命題推導编辑
簡單例子编辑
考慮N = 2個質量相同的質點構成的孤立體系,它們受萬有引力相互作用。假設兩個質點分別以v1(t)和v2(t) = −v1(t)的速度(大小均為v,方向相反)圍繞共同質心做匀速圆周运动,半徑為r,兩者分別受到作用力F1(t)和F2(t) = −F1(t)(大小均爲F,方向相反)。則體系的時間平均縂動能為:
以共同質心為原點,兩者的位置向量分別爲r1(t)及r2(t) = −r1(t)(大小均爲常數r)。引力方向朝向原點,與位置向量方向相反,故F1(t) ⋅ r1(t) = F2(t) ⋅ r2(t) = −Fr。又,向心力大小等於萬有引力大小:F = mv2/r。代入得:
一般推導编辑
與質點間勢能之關聯编辑
對於冪定律力编辑
關於時間平均编辑
一般化编辑
引入電磁場编辑
相對論均匀系統编辑
各學科中的應用编辑
量子力學编辑
狹義相對論编辑
天體物理學编辑
位力質量、位力半徑编辑
統計物理编辑
在統計物理中,有求一般熱力學系宗宏觀壓強張量的位力展開[來源請求]:
亦即體系壓強爲(與動能相關的)動理壓強和(與相互作用相關的)內壓強之和。上式中的第二項即爲均位力積相關項。
引用编辑
- ^ Clausius, RJE. On a Mechanical Theorem Applicable to Heat. Philosophical Magazine. Series 4. 1870, 40 (265): 122–127. doi:10.1080/14786447008640370.