打开主菜单
給定一個等邊三角形,通過把所有頂點映射到另一個頂點,繞三角形中心逆時針 120°旋轉“作用”在這個三角形的頂點的集合上。

数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。

定义编辑

 为一个 为一个集合,则  上的一个(左) 群作用是一个二元函数

 

(其中  的像写作 ),满足如下两条公理:

  1.   对于所有   成立
  2.  对于每个 成立 ( 代表 么元)

从这两条公理,可以得出对于每个 ,映射  的函数是一个双射,从 映射到 。因此,也可以将  上的群作用定义为从 对称群 群同态

若群作用 给定,我们称“G作用于集合X”或者X是一个G-集合

完全一样地,可以定义一个GX上的右群作用为函数 ,满足以下公理:

  1.  
  2.  

注意左和右作用的区别仅在于象gh这样的积在x上作用的次序。对于左作用h先作用然后是g,而对于右作用g先作用然后是h。从一个右作用可以构造一个左作用,只要和群上的逆操作复合就可以了。如果r为一右作用,则

 

是一左作用,因为

 

 

所以在这里,我们只考虑左群作用,因为右作用可以相应推理。